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We show that spontaneous breaking of discrete or continuous symmetries does not necessarily imply
either symmetry restoration or the thermal production of defects at high temperature (at least up to
T ~ Mpianck). This may imply that there is no domain wall problem. As an example we show how

this applies to the Peccei-Quinn scenario.
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We know from daily life that in the process of being
heated physical systems normally undergo phase transi-
tions becoming less ordered. By analogy one suspects the
same of the field theory systems with spontaneous sym-
metry breaking; at sufficiently high temperature the order
parameter or the vacuum expectation value (VEV) of the
scalar field should vanish, leading to symmetry restora-
tion. It turns out that this is precisely what happens in the
case of a single scalar field [1]. If true, in general, this
would lead in many cases to the production of topological
defects during the phase transition [2]. Some of these de-
fects, such as domain walls, are disastrous for cosmology,
since in the context of the standard big bang scenario they
carry too much energy. This is known as the domain wall
problem [3].

Various remedies have been offered to this problem,
the most celebrated one being inflation. However, this
beautiful mechanism would be of no help in many
interesting cases when the temperature is below the scale
of inflation whose era is expected to end at very high
scales (around 10'® GeV or so) [4].

In the present paper we address the question of whether
the symmetry nonrestoration can provide a solution to
the domain wall problem. The fact that symmetries may
remain broken at high 7 was found long ago [5,6],
however, to our knowledge, the possible role of the
symmetry nonrestoration for the solution of the domain
wall problem was, in fact, never studied.

This has prompted us to reconsider this important issue
of the high temperature behavior of gauge theories. Much
to our surprise, we find out that the nonrestoration of
symmetry at high 7 seems to be a natural consequence
in many minimal and realistic models (in particular, in
the theories of spontaneously broken P, CP, and Peccei-
Quinn symmetries). We shall present these findings in
a separate publication; here we show how this happens
in the invisible axion model. Furthermore, it turns out
that the requirement that the dangerous domain walls
(or strings) are not produced thermally, at least up to
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temperatures of order Mp, implies additional constraints
on the parameters.

Let us first recall briefly the essential features of both
symmetry restoration and nonrestoration mechanisms at
high temperature. The symmetry restoration at high T
can be illustrated on the example of real scalar field ¢
with the Lagrangian

L($) = 5 0udP = 5 (62 = ()

This Lagrangian possesses a discrete Z, symmetry
¢ — —¢ spontaneously broken by (¢) = *n. The
dominant high temperature contribution to the effective
potential for T >> 7 is given by

AV(T) = % T2 2. (2)

Since the boundedness of the potential demands A > O,
for T > T¢ = 2n, this leads inevitably to the restoration
of the Z, symmetry.

Now, according to the standard Kibble [2] scenario, this
fact leads to the production of domain walls during the
phase transition when the Universe cools down below T¢.

However, the situation may change drastically in theo-
ries with more fields. To see this, take a simple example
of two real scalar fields ¢ and ¢, with a potential

A A A
V= 41 (¢7 — mi)* + —42(¢§ - m)? - > D13,
3)

which has a Z, ® Z, symmetry: ¢; — — ¢, d2 — P2
and vice versa. Now the boundedness of the potential
requires

A >0, Ay >0, AAy > A% 4)
At high T the potential receives the correction [5]
1
AV(T) = 2 1BA = Déi + Bha = VAT (5)
One and only one of these mass terms can be negative

without conflicting (4), meaning that one VEV can remain
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nonzero at high 7. Thus the symmetry is only partially
restored to a single Z5.

Now it is time to ask: What about the domain wall
problem in such theories? For simplicity let us return to
the case with two Z, symmetries. First of all, the reader
should not be confused by only partial nonrestoration,
since in realistic cases at least one of the fields transforms
under a continuous gauge SU(2) ® U(1) symmetry. As
a result one of the Z, factors automatically becomes a
part of the SU(2) ® U(1) group and obviously cannot
lead to the domain wall formation. Thus we always
need to “nonrestore” only one actual Z, at high 7. Let
us choose as such the ¢ — — ¢ symmetry in our toy
model, meaning that we will assume

34 — A <0. (6)
Now at high T the effective potential is minimized by
1/2
A —3)
= *xT| ——— 7
(¢1) ( 20, ) (N

and the symmetry is never restored. Although the order
parameter (VEV of ¢)) is growing with temperature,
the thermal production of domain walls will take place
anyway at some (very high) 7. That is, if we start
heating the system in a homogeneous “initial condition,”
in which at T = 0 the vacuum is in, say, (+) phase
everywhere, the thermal fluctuations will finally destroy
this picture by pulling (¢1) over the potential barrier and
therefore creating domains of new (—) phase separated
from the “old” ones by domain walls. However, such
an effect could only take place at very high temperatures
(in the very early Universe). Production of a spherically
symmetric wall of radius R is equivalent to the creation
of a vacuum bubble of the different phase.

The corresponding rate per unit time and unit volume is
given by [7]

S3 V2 _
P S ) e 8
2aT) € ®)
where S3 is the energy of the bubble (domain wall)
S3 = 4wR%*c 9)

and o is the energy density per unit area [8] of a planar
wall

4 |A

o= 7‘<¢1>3. (10)

Now, a spherical wall of thickness larger than its own
radius would simply mean that no domain of the opposite
phase is formed, since the Higgs field is in the false
vacuum everywhere inside the given sphere. So, only
walls whose size is bigger than their width should be
considered as being “formed.” The width of a domain
wall is given by

B WD B
5_\/:@51) 2 A—3/\1T 1, (11)

and so we have R > §. If you assume for the moment
R > 6, from (7) and (9) you get

Sy 2w (A —30)% ,
= = R*T 1
T 9J6 i ’ (12)

and thus

S3 > 167 JA — 3\

T 3\/8 Aq
One can see that, for A; small, the above suppression
factor can be as small as one wishes and the numerical
factors work in our favor. Of course, as R gets closer to
&, the numerical factors become less certain. However,
the qualitative feature remains: for small A; one gets a
large suppression.

Of course, this analysis breaks down for temperatures
close to the Planck scale. Since we really do not
know what might happen at such high temperatures,
one may hope that the Planck scale corrections can
modify our effective potential in such a way that domain
wall production even there never happens. This is a
subject on which we cannot speculate, but the important
message from our analysis is that one can naturally
raise the formation temperature (say, for the electroweak
scale domain walls) by 16 to 17 orders of magnitude.
Consequences are straightforward: (a) either the walls are
never formed or (b) if formed, inflation, even if it takes
place at scales close to Mp and with an arbitrary high
reheating temperature, can cure any domain wall problem
including those attributed to the electroweak symmetry
breaking. Of course, as we said before, here we have
assumed the Universe to be homogeneous on the scales
of the comoving scale of the present horizon. We cannot
justify this and it obviously cries for inflation. For the
reason of space we leave the discussion of inflation and
its impact on the production of domain walls for a longer
paper now in preparation.

In some cases, for example, in the famous Peccei-Quinn
scenario for the solution of the strong CP problem, the
domain wall problem is a consequence of the existence
of cosmic strings in the model. Thus in the context
of symmetry nonrestoration the solution of the axionic
domain wall problem reduces to the elimination of the
string producing phase transition. In complete analogy
with the domain wall case above, we can estimate
the string production rate. For this, assume that in
our toy model one of the Higgs fields (say, ¢;) is
transforming under a global U(1) symmetry. Since U(1)
is spontaneously broken, this model admits a topologically
stable global string solution [8].

Now much in the way of the Z, symmetry, the high T
correction to the ¢;-dependent part of the potential is

4/\] - A 2 2

—T , 14
24 |1l (14)

so that for 4A; — A < 0, the U; symmetry is never

restored, with

K1 (T = (

(13)

AV(T, ¢y) =

_ 1/2
3‘_;4’\_1) T (15)

127
at high T.
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Again, the rate of the thermal production of a
closed string with radius R is given by (8), where
S3 = 2w R u and u is the energy per unit length

w= f{lvw V() — V(ST

To estimate u it is useful to separate the contributions
inside and outside of the core of the string, i.e., to assume
for the straight string (in cylindrical coordinates p, 6, 7)

d1(x) = (Pp1)f(ple, (17

where f(p) is some (monotonic) function such that
f(©) =0and f(p) =1 for any p > 8. Here & is the
thickness of the string, and obviously we assume R > §.
(In reality f will approach 1 exponentially as one goes to
infinity.) Then the general form of u is

w = 2| K3) + k|,

where K comes from the core contribution and depends
on the explicit form of f. For any given ansatz f,
the thickness is determined through minimization of w
as 8~' = dK/d#§, giving K a number of order 1. For
example, for the linear dependence inside the core f =
p/8 wehave K = 3/2 and 6 = \/12/A{¢)" ! and thus
from u > 27(¢)* we find the suppression factor for the
string production

(16)

(18)

S3 5 > R
= >yq — 19
T Tb1) T (19)
which for R > & gives
VA — 4A
§Ti > 4w2~)‘T~‘. (20)
1

As in the case of walls, the thermal production rate
for strings is suppressed for small A;. Notice that the
numerical factor in front is already large. However, again
for R close to & it cannot be trusted.

Here we wish to discuss how the possibility of
symmetry nonrestoration may solve the infamous
domain wall problem of the Peccei-Quinn mecha-
nism [9]. This mechanism, commonly accepted as the so-
lution to the strong CP problem, is based on the concept
of the continuous anomalous symmetry U(1)pg, whose

|

explicit breaking by instantons fixes 6 to be naturally
small. The instanton effects in the Higgs sector can be
mimicked by the effective phase dependent term in the
potential [10]

AV + Aep(l — cosNG), @1
where N is an integer and a = §Mpq is the axion field.
For example, in the invisible axion extension [11] of the
original Peccei-Quinn model N is the number of quark
flavors. Thus instantons preserve a discrete subgroup of
U(1)pq characterized by § — 6 + 27 /N. The eventual
spontaneous breaking of this discrete symmetry leads to
the formation of domain walls [12]. The dynamics of
the domain wall formation goes as follows [13]. At
the scale Mpg when U(1)pq is broken spontaneously the
network of global axionic cosmic strings is formed and
0 winds by 27 around each minimal string. Later on,
at the temperature 7 ~ Aqcp the instanton effects are
switched on and it becomes energetically favorable to
choose one out of the discrete set of values 27k/N (k =
1,2,...,N). Since A6 = 27 around the string, this
results in the formation of N domain walls attached to
the string. The domain walls are topologically stable and
thus cosmologically troublesome for N > 1.

Note that a remarkably simple way out would be not
to have strings formed at all, which as we have just
seen could result from the nonexistence of the first phase
transition. In such a case, above T = Aqgcp, 6 would
be aligned having some typical value 6y which after
the QCD phase transition would relax to the nearest
minimum (unless, of course, by some miracle 6, would
turn out to lie at one of the local maxima). Now, the
minimal realistic PQ model is based on the introduction
of a singlet field on top of two Higgs doublets [11].
As the reader knows by now, it is perfectly natural to
keep the VEV of the singlet nonvanishing at high T,
thus avoiding the formation of cosmic strings and the
subsequent troublesome domain walls.

Let us discuss this briefly. The potential for the PQ
model with the doublets ¢; (i = 1,2) both having Y = 1
and a SU(2) X U(1) singlet S may be written as

2 , / 2
Vio = — S BEl e+ 3 007+ T @le0@len + T @len e - Eists + sty

+ a(¢ldaS + ¢lg1S") + %(Z Biqs,-*qs,»)s*s.

Besides the SU(2);, X U(1l)y local gauge symmetry,
Vpq has a chiral U(1)py symmetry (¢ couples to, say,
down quarks, and ¢, to up quarks)

¢1 — eia¢1, ¢2_>e—ia¢2’ S — eZiaS‘

(23)
Now, among other terms at high 7', we will get
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(22)

AV(T) = -+ — %(/\x + B1 + B)TS™S.  (24)
Since we can take A; + B + B2 < 0, the temperature
dependent mass term for S remains negative and thus
(S) # 0 at high T.

Notice that the nonrestoration of U(1)pg at high T
is impossible without the singlet. Namely, with two
doublets only one of the VEVs can remain nonzero at
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high T [since U(1)pg forbids terms linear in the fields]
implying a necessary restoration of U(1)pg. We find it
remarkable that the singlet is essential for the solution
of the domain wall problem, since it is needed for
completely different reasons, both phenomenological and
astrophysical [10].

In summary, we have shown here that even in the
minimal models there may not be a domain wall problem.
We must stress may not, since one does not know what
can happen when one approaches the Planck scale. The
crucial point is that the usual scenario of Kibble may
not hold in general, and whether or not there is a phase
transition depends on as of yet unknown parameters in the
theory in question.

Furthermore, one can show that for a large range of
parameters, the thermal production of domain walls and
strings never takes place (except possibly for 7 = Mp).
This means that, even in the case that these objects do get
produced for T near the Planck scale, there is plenty of
time for inflation to dilute the density of their remnants.
This provides a solution to the domain wall problem even
for the case of electroweak scale breaking of the discrete
symmetry in question. Finally, this would also imply a
way out of the infamous domain wall problem in the
Peccei-Quinn scenario with the invisible axion.

As we mentioned before, the details of the high
temperature phase diagrams and the production rates of
topological defects in the early Universe will be presented
in a longer paper [14].
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