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A scenario is presented, based on renormalization group (linear perturbation) ideas, which can explain

the universality and scaling observed in a numerical study of gravitational collapse of radiation fluid.
In particular, it is shown that the critical exponent B and the largest Lyapunov exponent Rex of the

perturbation is related by 8 = (Rex)™!.

We find the relevant perturbation mode numerically, and obtain

a fairly accurate value of the critical exponent 8 = 0.35580192, also in agreement with that obtained

in numerical simulation.

PACS numbers: 04.40.-b, 04.70.Bw, 64.60.Ak

1. Introduction. — Gravitational collapse with the for-
mation of black holes is one of the main problems of
classical general relativity. Recently, Choptuik [1] dis-
covered a “critical behavior” of the gravitational collapse
of a massless scalar field by a numerical study. His result
can be summarized as follows: Let the initial distribution
of the scalar field be parametrized smoothly by a parame-
ter p, such that the solutions with the initial data p > p*
contain a black hole, while those with p < p* do not. For
several one parameter families investigated, near critical
solutions (p = p™) satisfy the following: (i) the critical
solution (i.e., p = p*) is universal in the sense that it ap-
proaches the identical spacetime for all families, (ii) the
critical solution has a discrete self-similarity, and (iii) for
supercritical solutions (p > p*) the black hole mass satis-
fies Mgy = (p — p*)? and the critical exponent 8, which
is about 0.37, is universal for all families. Abrahams and
Evans [2] found similar phenomena in the axisymmetric
collapse of a gravitational wave.

Evans and Coleman [3] found similar phenomena with
B = 0.36 in a spherically symmetric collapse of radiation
fluid, in which case the self-similarity is not discrete but
continuous. Employing a self-similar ansatz they also
found a numerical solution which fits the inner region of
the near-critical solutions very well, and suggested that
linear analysis around the solution will be useful.

In this Letter, we present a scenario that explains the
critical behavior observed in the radiation fluid collapse.
We directly relate eigenvalues (Lyapunov exponents) of
perturbations of the self-similar solution to the critical
exponent B, using an argument of renormalization group
transformation. The formulation is general, and could be
applied to other models with approximate self-similarity.
We find the eigenvalues of the perturbation by numerical
analysis, and find that the value of the exponent S
predicted from our analysis matches very well with that
observed in [3].

5170 0031-9007/95/74(26)/5170(4)$06.00

We present our picture in Sec. 2. After reviewing the
equations of motion in Sec. 3, and the self-similar solution
in Sec. 4, we confirm our picture to an extent in Sec. 5
by a numerical study. Section 6 is for conclusions and
discussions.

2. A scenario based on renormalization group ideas.—
We give a formalism for linear perturbations around a
self-similar spacetime from the point of view of the
renormalization group, which proved to be extremely
successful in the study of critical phenomena [4]. We
have benefited from the formulation of [5]. The argument
is general, but the notation is so chosen as to pave
the shortest path to our analysis on radiation fluid.
We introduce the “scaling variable” s and the “‘spatial
coordinate” x, which are related to the time ¢ and the
radial coordinate r by s = —In(—1),x = In(—r/1).

2(a). Renormalization group and linear perturba-
tions.—Let h = (hy, h,,...,h,) be functions of s and x
which satisfy a partial differential equation (PDE)

(12 ) 0
ds 0x

Suppose that the PDE is invariant under the “scaling
transformation” (translation in s) with s € R

h(s,x) — h(s + so,x). 2)
A renormalization group transformation (RGT) R_,.(, is a
transformation on the space of functions of x,
Ry, : H— H“, (3)
where
H(x) = h(0,x), 4
HE(x) = h(sg,x). (5)
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Namely, one obtains H*? by evolving the initial data H
at s = 0 by the PDE to s = s. fZiSD forms a semigr/ogp
with parameter s, and we denote its generator by DR,
ie, DR = limso_.o(fflm — 1)/so. In this context, a self-
similar solution hg(s,x) = Hy(x) can be considered as
a fixed point of f}g& for any so, and is characterized by

A

R, Hy = Hy or DRH, = 0.
The tangent map of R; at a fixed point Hy is defined
as a transformation on functions of x:
. R, (Hy + €F) — Hg

T, F = lim
e—0 €

(6)

An eigenmode F(x) of DT = lims(,_.o(f}o — 1)/s¢ is a
function which satisfies (x € C)

DTF = xF. 7
These modes determine the flow of the RGT near the fixed
point. A mode with Rex > 0, a relevant mode, is a flow
diverging from H, and one with Rex < 0, an irrelevant
mode, is a flow converging to it. A Rex = 0 mode is
called marginal.

2(b). The critical solution.—In this and the next sub-
section, we present a scenario which explains the observed
critical behavior of radiation fluid, assuming that there is a
unique relevant mode with eigenvalue « (and, for simplic-
ity, no marginal mode) around the fixed point Hy. This
assumption is confirmed to some extent in Secs. 3-5.

The assumption implies that the RG flow around the
fixed point is shrinking, except for the direction of the
relevant mode (Fig. 1). There will be a “critical surface”
or a ‘“stable manifold” § of the fixed point Hg, of
codimension one, whose points will all be driven towards
H. There will be an “unstable manifold” U of dimension
one, whose points are all driven away from Hg. A one
parameter family of initial data 7/ will in general intersect
with the critical surface, and the intersection H. will be
driven to Hg under the RGT:

lim [H{(x) — Hy(x)| = 0. (®)

HYY

FIG. 1. Schematic view of RG flows near H.

So, H, are the initial data with critical parameter p*. The
existence of a critical solution for an arbitrarily chosen
family of initial data thus supports the assumption of a
unique relevant mode [6].

2(c). The critical behavior.—We now consider the fate
of an initial data Hj,;, in the one parameter family, which
iscloseto H. (e = p — p*):

Hinil(x) = Hc(x) + EF(X)' (9)

We evolve these data to s = sy (chosen later): It will
first be driven towards H, along the critical surface, but
eventually be driven away along the unstable manifold.
Using linear perturbations we have [7]

Hill = Ry Hinic = Ry, (H. + €F)

= H + €T F + O(e?). (10)
In the second term, only the relevant mode survives:

T F = exp(soﬁ?)F = " Fp, (1D

where F,.; is the component of the relevant mode in
F. Because of (8), we finally have (for large sy and
x = S())
Hill(x) = Hy(x) + €€ Frei(x) . (12)
Now we choose sg so that the first and second terms in
(12) become comparable, i.e.,

[e]e®ReI0 = O(1). (13)

Now that the second term is of O(1), the data H,(,fﬂ’z differ
from Hy so much that one can tell the fate of these data
depending on the sign of €, and if a black hole is formed,
the radius of its apparent horizon, and thus its mass, will
be O(1) measured in x.

Finally, we translate the above result back into our
original coordinate (z,r). The relation r = ¢*~* implies
that the radius of the apparent horizon, which is O(1)

measured in x, is in fact O(e %) measured in r. So we
have from (13)
Mg = O(e™) = O(|e|/®)). (14)

Therefore the critical exponent is given exactly [7] by

-1
P~ Rex” (1)

3. Equations of motion.—The line element of any
spherically symmetric spacetime is written as

ds®> = — a*(t, r)dr* + a*(t, r)dr?
+ r}(d6* + sin’0 d¢p?). (16)
The only coordinate transformation which preserves the

form of Eq. (16) is

t— F (). 17)
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We assume the matter content is a perfect fluid having energy-momentum tensor T, = pugu, + p(gar + uqup),
where ©? is a unit timelike vector and p = (y — 1)p. We only consider the radiation fluid y = 4/3 in this Letter. The
components of u® can be written as ¥, = a(1 — V?) Y2 and u, = aV(1 — V2)~'/2, where V is the three-velocity of fluid
particles. In terms of variables s = —In(—1),x = In(—r/¢), and introducing N = aa e *, A = a®, w = 4w r?a®p,
we can write the equations of the system in an autonomous form, which makes the scale invariance of the system
transparent:

A,y 2w V2 N, 2w
== 1-A+ e =-2+A- =
A 1 — V2< 3 )’ N A 3
+(1 + NV X 4 s T + sx X >x
w,s +( Jw, + {vv (N VIV.,.} _ NVA + 4VN + 2NV(1 n 4w ): 0.
w 3(1 — V?) 3A 3 9(1 — Vv?) (18)
4Vw,,+(@4V + N + 3NV w,, . 41+ VIV, +(1 + V2 + 2NV)V, . }
w 1 — V2
N(1 — VA
+—(—A—w)-ﬁ + 4(1 + VN, +2N(1 + 3V?) = 0.
I
4. The critical solution.—One obtains self-similar As in the case of self-similar solutions, we require (i)

spacetimes by assuming that N and A depend only on that the perturbations are analytic for all x € R and (ii)
x: N = Ngx(x),A = Agx(x). Conversely, it can be shown that the perturbed spacetimes are regular at the center
[8] that one can express any spherically symmetric self- (Ap, Vp vanish at x = —). The sonic point becomes a
similar spacetimes in that form if one retains the freedom regular singular point for the perturbations. It is not hard
of coordinate transformation (17). Then it follows from to see that apart from the overall multiplicative factor,

Egs. (18) that w and Vg are also functions of x only: the perturbation solutions which satisfy the analyticity

w = ws(x),V = Vi(x). We fix the coordinate system condition (i) are specified by one free parameter x. This,

by requiring that the sonic point (see below) be at x = 0. together with the regularity condition (ii) at the center,
We require (i) that the self-similar solution be analytic allows only discrete values for « in general.

for all x € R and (ii) as a boundary condition that the Figure 2 shows the profile of the largest relevant

spacetime and the matter are regular, A = 1 and V = 0, at eigenmode obtained numerically. It has the eigenvalue

the center (x = —). As has been extensively studied by k = 2.81055255. This implies the exponent value B =

Ori and Piran [9], the analyticity condition (i) requires that 0.35580192 from Eq. (15) in our scenario of Sec. 2. This
the solution be analytic, in particular, around the sonic is in good agreement with the value of [3].
point, where the velocity of the fluid particle seen from To further confirm our scenario, we have checked that
the observer on the constant x line is equal to the speed there are no other relevant (or marginal) eigenmodes in
of sound 1/+/3. The sonic point is a singular point for  the range 0 = Rex = 15,|Imk| < 14. We remark that
the ordinary differential equations (ODE’s) satisfied by
self-similar solutions, and, considering the power series
expansion, one can see that the solutions are specified by
one parameter, say, the value of V(0). This, together
with the regularity condition at the center (ii), restricts
Vss(0) to have only discrete values. We employ the
Evans-Coleman self-similar solution as our Hg in the
following.

5. Perturbation.—Perturbation equations (7) are ob-
tained by taking the first order variation in Egs. (18) from
the Evans-Coleman solution H:

40 T T T T T

h(s,x) = Hy(x) + €hyy(s, x), (19) )

20 | i

where h represents each of (N,A,w,V). We require

Nyar(s,0) = 0 to fix the coordinate freedom (17). a0 ‘ . . . , ,
We consider eigenmodes of the form 7, (s, x) = N 4 2 2 N ©

hp(x)e**, with « € C being a constant. Substituting FIG. 2. Profile of the eigenmode with the largest eigenvalue.

this form into (19) and then into (18) yields linear, Curves represent A, (solid line), NI'N, (dashed), o;'w,
homogeneous first order ODE’s for (N,,A,, wp, Vp). (dotted), and V,, (dot-dashed).

x o
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there is an unphysical “gauge mode” at x = 0.35699 (in
our gauge), which emerges from a coordinate transforma-
tion applied to the self-similar solution. Because of the
complicated structure of the equations of motion, we have
not found a good argument which can restrict possible
eigenvalues (like that of [10], and references therein).

6. Conclusions and discussions.—In this Letter we
have presented a scenario based on the renormalization
group (linear perturbation) ideas, by which the critical
behavior in the black hole formation in the radiation fluid
collapse is well understood. In particular, we have shown
that the critical exponent B is equal to the inverse of the
largest Lyapunov exponent Rex. We have performed a
partial confirmation of the picture, and modulo of some
assumptions about distributions of eigenmodes have found
an accurate value 8 = 0.355801 92, which is also close to
that reported in [3].

Complete confirmation of the scenario requires further
study of local and global structures of RG flows around
the fixed point Hg. To establish the local picture, i.e.,
the contraction property of the RGT on the cospace of our
relevant mode in some neighborhood of Hg, one could
try to prove that the eigenmodes form a complete set
of solutions and that all modes except our relevant one
are, in fact, irrelevant. Establishing the global picture,
which corresponds to proving that the global critical
surface exists and the RG flow around it is as depicted in
Fig. 1, will pose another challenging problem which will
be beyond the scope of linear perturbations. Complete
knowledge of the RG flow could expand the horizon of
our understanding the gravitational collapse.

It is expected that the critical behavior in the scalar
field collapse, where the self-similarity is discrete, can
be understood in a manner similar to the analysis in this
Letter. One can consider the critical solution as a fixed
point of the RGT TRSO with a suitably chosen sg, and can
perform linear perturbation analysis around it. Work in
this direction is now in progress. ‘

Our intuition on gravitational collapse still seems to
be heavily based on a few exact solutions, especially the
limiting case of pressureless matter. The critcial behavior
may provide a different limiting case that the final mass
is small compared to the initial mass for a more realistic
and wider range of matter contents. It will be of great
help to settle the problems in gravitational collapse such
as cosmic no hair conjecture.
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Note added.—To further confirm our scenario we
performed a Lyapunov analysis, which extracts eigen-
values {xi, z,...} in descending order in Rex;. Our
preliminary results strongly support the uniqueness of the
relevant mode « = 2.81 [8].
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