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Critical Behavior in Gravitational Collapse of Radiation Fluid: A Renormalization Group
(Linear Perturbation) Analysis
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A scenario is presented, based on renormalization group (linear perturbation) ideas, which can explain
the universality and scaling observed in a numerical study of gravitational collapse of radiation fiuid.
In particular, it is shown that the critical exponent P and the largest Lyapunov exponent Rex of the

perturbation is related by P = (Re~) '. We find the relevant perturbation mode numerically, and obtain
a fairly accurate value of the critical exponent P = 0.35580192, also in agreement with that obtained
in numerical simulation.

PACS numbers: 04.40,—b, 04.70.Bw, 64.60.Ak

2'. Introduction. —Gravitational collapse with the for-
mation of black holes is one of the main problems of
classical general relativity. Recently, Choptuik [1] dis-
covered a "critical behavior" of the gravitational collapse
of a massless scalar field by a numerical study. His result
can be summarized as follows: Let the initial distribution
of the scalar field be parametrized smoothly by a parame-
ter p, such that the solutions with the initial data p ) p*
contain a black hole, while those with p ( p' do not. For
several one parameter families investigated, near critical
solutions (p = p ) satisfy the following: (i) the critical
solution (i.e., p = p*) is universal in the sense that it ap-
proaches the identical spacetime for all families, (ii) the
critical solution has a discrete self-similarity, and (iii) for
supercritical solutions (p ) p*) the black hole mass satis-
fies MBH ~ (p —p*)P and the critical exponent P, which
is about 0.37, is universal for all families. Abrahams and
Evans [2] found similar phenomena in the axisymmetric
collapse of a gravitational wave.

Evans and Coleman [3] found similar phenomena with

P = 0.36 in a spherically symmetric collapse of radiation
fIuid, in which case the self-similarity is not discrete but
continuous. Employing a self-similar ansatz they also
found a numerical solution which fits the inner region of
the near-critical solutions very well, and suggested that
linear analysis around the solution will be useful.

In this Letter, we present a scenario that explains the
critical behavior observed in the radiation quid collapse.
We directly relate eigenvalues (Lyapunov exponents) of
perturbations of the self-similar solution to the critical
exponent P, using an argument of renormalization group
transformation. The formulation is general, and could be
applied to other models with approximate self-similarity.
We find the eigenvalues of the perturbation by numerical
analysis, and find that the value of the exponent P
predicted from our analysis matches very well with that
observed in [3].

Suppose that the PDE is invariant under the "scaling
transformation" (translation in s) with so H R

h(s, x) ~ h(s + so, x). (2)

A renormalization group transformation (RGT) R,.„ is a
transformation on the space of functions of x,

(3)

where

H(x) = h(o, x), (4)

H~'"1(x) = h(so, x).

We present our picture in Sec. 2. After reviewing the
equations of motion in Sec. 3, and the self-similar solution
in Sec. 4, we confirm our picture to an extent in Sec. 5

by a numerical study. Section 6 is for conclusions and
discus s1ons.

2. A scenario based on renorma(igation group ideas. —
We give a formalism for linear perturbations around a
self-similar spacetime from the point of view of the
renormalization group, which proved to be extremely
successful in the study of critical phenomena [4]. We
have benefited from the formulation of [5]. The argument
is general, but the notation is so chosen as to pave
the shortest path to our analysis on radiation quid.
We introduce the "scaling variable" s and the "spatial
coordinate" x, which are related to the time t and the
radial coordinate r by s = —ln( —t), x —= ln( —r/t).

2(a). Renorrnalization group and linear perturba
tions —Let h = (h. l, hz, . . . , h ) be functions of s and x
which satisfy a partial differential equation (PDE)

5170 0031-9007/95/74(26)/5170(4)$06. 00 1995 The American Physical Society



VOLUME 74, NUMBER 26 PH YS ICAL REVIEW LETTERS 26 JvNE 1995

Namely, one obtains H'" by evolvin the in

yt e DEtos=s.t DE = o. R„ forms a semigrou

with parameter s an"0, and we denote its generator by DR,
i.e., DR = lim, p(R —1)/jq'so. In this context, a self-
similar solution h„(s, x) = H x1 ' „,x = „(x) can be considered as
a~"axed point of R, for an sa~"i u „any so, and is characterized by

The tan ent mag ap of R, at a fixed point H, , is defined
as a transformation on functions of x..

Rs, (Hss + eF) —H, ,
~o v~0 (6)

An eigenmode F(x) of DT = 1A = im, „p(T,„—1) &s is a
function which satisfies (K E C)

(7)
These modes determine the Aow of the ROT nea

mode is a PI

e~, an irrelevant
, is a PIow converging to it. A Resc = 0 m

called marginal.
ere = 0 mode is

2~b,~. The critical solution. —In this and th
e present a scenario which explains the obs

critical behavior of ra
eo served

uni ue iele
o ra iation quid, assuming that tha ere is a

it no
q evant mode with eigenval ~ d, f pue ~ ~an, or simplic-

i y, no marginal mode) around the fixede xe point H„. This
p ion is confirmed to some extent in Secs. 3—5.

The assumption implies that the RG How

relevant mode Fi . 1 .
n is s nn ing, except for the direction of tho e

( ig. ). There will be a "critical surface"
or a "stable manifold" 5 of th fi de xe &oint H

ose points will all be driven towards
ere will be an "unstable manifold" U of dio imension

p in s are all driven away from H„. A one
parameter family of initial data I will in
with th e critical surface

a a wi in general intersect
ace, and the intersection H, will be

driven to H„under the RGT:
lim IH,"(x) —H, , (x)l = o. (g)

So, H, are the initial dadata with critical parameter *. The
existence of a critical solution for an aro u ion or an arbitrarily chosen

o initia ata thhus supports the assum tion of
unique relevant mode [6].

2(c). The critical behavior .W—e now con2 ' '
r.—e now consider the fate

a a j», in the one parameter famil h
is close to H (e =c &=p p

i y, w ic

H,„;,(x) = H, (x) + eF(x).
We evolve these data to s = ( h

first be driven towards H„alon the c
s = so c osen later: It

ar s „aong the critical surface, but

~ ~

n ua y e riven awa aly ong the unstable manifold.
sing linear perturbations we have [7]

H(&o);„;, =R„H;„;,=R„(H, + «)
= H~'"~ + eT,„F + O(e ) . (10)

In the second term, only the relevant mode survives

H( )H;„;,(x) = H„(x) + ee '"F„i(x (12)

Now we choose so so that the
(12) b

he first and second terms in
ecome comparable, i.e.,

lele~"'" = O(1). (13)

Now that the second term is of O(1), the data H '
from H„so much th t

, t e ata Hjojt differ
uc at one can tell the fate of the

depending on the si n of e an
o these data

e sign o ~, and if a black hole is formed

pp orizon, and thus its mass willt e radius of its a arent ho
e 0 1) measured in x.

Finall wey, translate the above result back into our
original coordinate (t, r). The relation r = e' ' i

o e apparent horizon, which is O(1)
measured in x, is in fact O(e " meas
have from (13

e ' measured in r. So we

Ts, F = exp(&pDT)F e oFre] ~

wh p nt of the relevant mode inere F„] is the corn onen
Because of (8), we finally have (for large sp and

x ~ sp

M» ——O(e ") = O(lei"'"')
Therefore the critical ex

~ ~' '
al exponent is given exactly [7] by

(14)

(15)
ReK

3. Equations of motion —The 1'.e ine element of any
sp erica y symmetric spacetime is written as

+ r (dO + sin 0dg ) ( 6)

The onl y coordinate transformation which
form of Eq. (16) is

n w ic preserves the

FIG.G. 1. Schematic view of RG 0ows near H„. t ~ F '(t). (17)
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We assume the matter content is a perfect fiuid having energy-momentum tensor T,b
= u, ub + p(g, b + u, ub,

where u' is a unit timelike vector and p = (y —1)p. We only consider the radiation fluid y = 4/3 in this Letter. The
components of u' can be written as u, = n(1 —V ) '~ and u. = aV(1 —V )

' h
'

hu,. = a &
—

&
. , w ere V is the three-velocity of quid

partic es. In terms of variables s —= —ln( —t), x —= ln( —r/t), and introducing N —= na 'e ' A —= a cu —= 7rr a
a es e sca e invanance of the systemwe can write the equations of the system in an autonomous form, which makes th l f h

transparent:

A, 2 ccp V N,
1 —A + 1+, "=—2+A-

A 1 —V2 3 N

cu s +(1 + NV)cu 4(VV +(N + V)V ) NVA 4VN

(1 —V~) 3A
+ 2NV 1 +

3 9(1 —V~)

4Vcu„+(4V + N + 3NV2)cu„4((1 + V )V„+(1 + V + 2NV)V„)
CU 1 —V2

N(1 —V~)A„+ ' + 4(1 + V )N„+2N(1 + 3V ) = 0.

(18)

4. The critical solution. —One obtains self-similar
spacetimes by assuming that N and A depend only on
x: N = N„(x),A = A„(x). Conversely, it can be shown

[8] that one can express any spherically symmetric self-
similar spacetimes in that form if one retains the freedom
of coordinate transformation (17). Then it follows from
Eqs. (18) that tu„and V, , are also functions of x only:
tu = co„(x),V = V„(x). We fix the coordinate system
by requiring that the sonic point (see below) be at x = 0.

We require (i) that the self-similar solution be analytic
for all x E R and (ii) as a boundary condition that the
spacetime and the matter are regular, A = 1 and V = 0, at
the center (x = —~). As has been extensively studied by
Ori and Piran [9], the analyticity condition (i) requires that
the solution be analytic, in particular, around the sonic
point, where the velocity of the Quid particle seen from
the observer on the constant x line is equal to the speed
of sound I/~3. The sonic point is a singular point for
the ordinary differential equations (ODE's) satisfied by
self-similar solutions, and, considering the power series
expansion, one can see that the solutions are specified by
one parameter, say, the value of V„(0). This, together
with the regularity condition at the center (ii), restricts
V, , (0) to have only discrete values. We employ the
Evans-Coleman self-similar solution as our H„ in the
following.

5. Pevturbation —Perturbation .equations (7) are ob-
tained by taking the first order variation in Eqs. (18) from
the Evans-Coleman solution H„:

As in the case of self-similar solutions, we require (i)
that the perturbations are analytic for all x ~ R and (ii)
that the perturbed spacetimes are regular at the center
(Ap Vp vanish at x = —~). The sonic point becomes a
regular singular point for the perturbations. It is not hard
to see that apart from the overall multiplicative factor,
the perturbation solutions which satisfy the analyticity
condition (i) are specified by one free parameter ~. This,
together with the regularity condition (ii) at the center,
allows only discrete values for ~ in general.

Figure 2 shows the profile of the largest relevant
eigenmode obtained numerically. It has the eigenvalue
~ = 2.81055255. This implies the exponent value P =
0.355 801 92 from Eq. (15) in our scenario of Sec. 2. This
is in good agreement with the value of [3].

To further confirm our scenario, we have checked that
there are no other relevant (or marginal) eigenmodes in
the range 0 ~ Rea ~ 15, ~lm~~ ~ 14. We remark that
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h(s, x) = H„(x) + eh„,(s, x), (19)
-10

where h represents each of (N, A, ~, V). We require
N„,(s, 0) = 0 to fix the coordinate freedom (17).

We consider eigenmodes of the form h„„(s,x) =
h~(x)e ', with ~ E C being a constant. Substituting
this form into (19) and then into (18) yields linear,
homogeneous first order ODE's for (N~, A~, a&~, V~).

-20

-30

FI&G. 2. Profile of the eigenmode with the largest eigenvalue.
Curves represent A~ (solid line), N, , '

N~ (dashed), cu, ,
' co,

(dotted), and V~ (dot-dashed).
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there is an unphysical "gauge mode" at N. = 0.35699 (in
our gauge), which emerges from a coordinate transforma-
tion applied to the self-similar solution. Because of the
complicated structure of the equations of motion, we have
not found a good argument which can restrict possible
eigenvalues (like that of [10],and references therein).

6. Conclusions and discussions. —In this Letter we
have presented a scenario based on the renormalization
group (linear perturbation) ideas, by which the critical
behavior in the black hole formation in the radiation quid
collapse is well understood. In particular, we have shown
that the critical exponent P is equal to the inverse of the
largest Lyapunov exponent Re~. We have performed a
partial confirmation of the picture, and modulo of some
assumptions about distributions of eigenmodes have found
an accurate value P = 0.355 801 92, which is also close to
that reported in [3].

Complete confirmation of the scenario requires further
study of local and global structures of RG fIows around
the fixed point H„. To establish the local picture, i.e.,

the contraction property of the RGT on the cospace of our
relevant mode in some neighborhood of H„, one could
try to prove that the eigenmodes form a complete set
of solutions and that all modes except our relevant one
are, in fact, irrelevant. Establishing the global picture,
which corresponds to proving that the global critical
surface exists and the RG Aow around it is as depicted in
Fig. 1, will pose another challenging problem which will
be beyond the scope of linear perturbations. Complete
knowledge of the RG flow could expand the horizon of
our understanding the gravitational collapse.

It is expected that the critical behavior in the scalar
field collapse, where the self-similarity is discrete, can
be understood in a manner similar to the analysis in this
Letter. One can consider the critical solution as a fixed
point of the RGT R„with a suitably chosen sp, and can
perform linear perturbation analysis around it. Work in
this direction is now in progress.

Our intuition on gravitational collapse still seems to
be heavily based on a few exact solutions, especially the
limiting case of pressureless matter. The critcial behavior
may provide a different limiting case that the final mass
is small compared to the initial mass for a more realistic
and wider range of matter contents. It will be of great
help to settle the problems in gravitational collapse such
as cosmic no hair conjecture.
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Note added. To further confirm our scenario we
performed a Lyapunov analysis, which extracts eigen-
values (~l, ~q, . . .) in descending order in Re~;. Our
preliminary results strongly support the uniqueness of the
relevant mode sc = 2.81 [8].
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