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Unpredictability in Some Nonchaotic Dynamical Systems
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We study properties of decay of the correlations for a class of smooth observables and mutual mixing
for a class of subsets, with various rates ranging from the power-law to the exponential rate, in simple
deterministic nonstrongly chaotic dynamical systems on the torus I . In fact, these systems are ergodic,
have zero K-5 entropy and an absolutely continuous part in their spectrum, and display divergence of
trajectories with a power-law rate. We show that they generate time series which are unpredictable in
the sense of the statistical theory of prediction.

PACS numbers: 05.40.+j, 02.50.Ey

In this Letter we consider the relation between dynam-
ics, chaos, and the statistical theory of prediction.

It is now widely admitted that the exponential insta-
bility of trajectories implies randomness. In fact, the
thermodynamic formalism (see references in Ref. [1])
associates with unstable systems strongly random station-
ary processes (K systems) which can also be described
as Markov processes with the H theorem [2]. This does
not mean, however, that dynamical systems which do not
exhibit exponential instability may not display some re-
markable features of randomness and some features of ir-
reversibility, like entropy production. In this Letter we
consider these questions illustrated in a class of transfor-
mations on the torus T~ which display divergence of tra-
jectories with a power-law rate.

The complexity of a dynamical system, generally
associated with the instability of the trajectories, can
also be statistically described by the properties of some
natural invariant measure. Such important properties are
the existence of a continuous spectrum and the fast decay
of correlations of a class of smooth observables, the er-
godicity and the mixing. Another characterization of the
complexity is the nonpredictable nature of the time series
generated by the dynamical system under observation,
at regular time intervals, of orbit visits of the different
regions yielding some partition of the phase space. These
time series, also called symbolic dynamics, generate a
stationary stochastic process. In this respect, the metric
and topological entropies are generally considered as
measures of randomness of the dynamics. In statistics,
the prediction theory [3] gives a characterization of the
predictability of some stationary stochastic process when
under the observation of the full past of the process; its
future can be predicted in the sense of least squares, as
briefly summarized in the next section.

The model which we study in this Letter is a simple
deterministic dynamical system for which the topological
entropy is zero; nevertheless, it has several features of
randomness. The main tool which allows this study
is the existence of a continuous correlation spectrum

of Lebesgue type for a class of observables which we
characterize. We display a class of smooth observables
for which the rate of decay of correlations is exponential ~

Although the system is not mixing, we can display
a class of subsets which have mixing properties with
nonuniform rate, ranging from power-law to exponential
decay. We display a class of partitions that generate
stationary stochastic processes which are not predictable
in the sense of the statistical prediction theory.

Recently, it has been noticed that many nonlinear
phenomena in nature emerge at the border separating
chaos and order [4]. The properties of the model which is
studied here may be pertinent to this type of phenomenon.

A family of maps with zero topological entropy
The family of invertible transformations T ~ (which we
denote simply T, unless in particular cases) acts on the
torus I, where I denotes the circle [0, 2~], n E I, and

p is any nonzero integer. It is defined by

T ~(x) =(x+ n, px+y).
The normalized Lebesgue measure d p, (x, y) = [1/
(27r) ]dxdy is invariant under T. It is known [5] that,
for irrational n, T has only one invariant measure, so
it is ergodic. This family of maps is a special case of
the class of the so-called skew product of transforrna-
tions. Abramov and Rokhlin [6] have given a formula
for the computation of the K-S entropy of the skew
product. It implies in this case that the K-S and, on
account of the unitarity of the invariant measure, also
the topological entropy are zero. So, according to a
generally admitted terminology, T is not chaotic. Indeed,
the dynamics of the system is very simple, as can be
seen in the case n = 0, where it consists in a rotation
with a variable speed x. Nevertheless, we shall see
that, although very simple, the system has surprisingly a
continuous spectrum which is responsible for some form
of loss of memory and displays a divergence of nearby
trajectories, which is not of the exponential type. To see
this, we compute the iterate T", and we obtain T"(x, y) =
[x + nn, y + npx + n(n —1)pn/2]. Thus for any
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(f, U"f) = e'" d p, g (cu) .

The measure d p,~ is said to be absolutely continuous with
respect to the Lebesgue measure if it is continuous with
an integrable density S(~). S is also called the correlation
spectrum of f If, moreov. er, S(co) is almost everywhere
nonzero, d p,~ is said to be of Lebesgue type.

Now, back to our transformation. We calculate the
action of U on the orthonormal basis g„(x,y) = e'"'e'"~,
n and m running in Z, and we obtain from the definition
of U Uppz~: e pz+~p

Consider first the subspace spanned by the family
(g„, n, m C Z, m 4 0). This family can be renumbered,
so we obtain by multiplying each element by a suitable
constant a countable family of orthonormal functions e;, ,

i = 1, 2, . . . , and j E Z, such that Ue;, = e;,+&. It is
known [5] that this implies that for any function f in this
subspace the spectral measure dp, ~ is absolutely continu-
ous; therefore, we denote this subspace H„. For every
pair of observables in H„ the correlation function decays
to zero as n ~, according to the Riemann-Lebesgue
lemma. On the other hand, the orthocomplement sub-

~
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FIG. 1. The action of To„on a family of subsets. The figure
shows, successively, subsets F., TO~F, and To pE.

couple of points (x&, y~) and (x2, y2) we have

T"(xi, yi) —T"(x2, y2) = [xi —x2, yi —
y2

+ n p (x ~

—x2)] (mod 1);
therefore, two arbitrary nearby points having distinct x
coordinates will diverge according to a power law.

As to mixing properties of T, it has a delocalizing
action on a family of regions of the phase space which
we illustrate in Fig. 1 for some simple subsets, in the
case n = 0 and p = 1. Nevertheless, the system is not,
in a strict sense, mixing, as we shall see below, that is,
p, (T "A R 8) does not converge to p, (A)p(B) as n ~ ~,
for all subsets A and 8 of I, of positive measure, but
only for a class of subsets.

Another quantity which is of great interest is the
correlation function of two square integrable observables

f and g: (f, U"g) —(f, 1)(l,g) where (, ) denotes the
standard scalar product in L and U is the unitary operator
associated with T: Uf(x, y) = f(T(x, y)).

We shall first study the decay of correlations and the
correlation spectrum for a class of observables. Let us
recall the concept of the correlation spectrum of a function

f on T2. With any f H L„ is associated a spectral
measure d p,~ which is defined by the relation

2'

space of H„ is spanned by the family of functions [g„o),
which are all eigenfunctions of U. We call this sub-
space Hd. It is clear that Hd is the subspace of functions

f E L2, which depend only on x, so the orthogonal pro-
jection operator on Hd is

Pdf(x) = f(x, y) dy.

Thus any observable f such that Pd f = 0 belongs to H„,
so that its autocorrelation function decays to 0 as n ~ ~.
On the other hand, it is possible to express the mixing of
two subsets E and F by taking the correlation function
of f = le —p, (E) and g = lF —p, (F), where lE is the
characteristic function of E:
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p(E R , T "F) —p, (E R F) = (g, U"f).
Thus two subsets are mutually mixing if the above
quantity tends to zero as n +~. It results, therefore,
that all the subsets E such that the function [lz —p, (E)] is
in H„are mutually mixing. This is so if this function
has zero orthogonal projection on Hd. It comes from
the definition of this projection that the section of E at
fixed x, E, = (y: (x, y) H E), has a constant length equal
to 27rp, (E), and this property characterizes the class of
mutually mixing subsets.

We now study the problem of the rate of decay of the
correlation function. The exponential rate of decay for
smooth observables is the signature of a loss of memory.
By exponential rate we mean that the correlation function
of two observables f and g, with zero expectation,
satisfies ~(f, U"g) ~

(Ce "), n ~ 0, for some positive
constants n and C. It is possible to show [7] (we omit the
details) that for a generic class of continuous functions in

H, the rate of decay is slower than any exponential rate.
There is, nevertheless, a dense class of functions in

H„ for which the rate is exponential. An observable
f(x, y) in this class is described as follows: (i) f is
periodic of period 2~ and continuous as a function of
(x, y) and (ii) for any fixed value of y, it is, as a
function of x, of the form f (x, y) = F(e",y), such that
the function z F(z, y) has analytic continuation in some
annulus containing the unit circle S' = (e', 8 e [0,2']).
The projection of any such function on H, has an
exponentially decaying autocorrelation function; the rate
of the exponential decay is related to the width of this
annulus.

In general, for less smooth functions, the rate of decay
of the correlations follows a power law, which, in some
cases, is as slow as I/n. This is illustrated by the family
of observables which are of the form f(x, y) = P n;~e,
where each subset E; is a union of squares of length
2~/m, with constant total width along y (see Fig. 2).
It can be shown (we omit the details) [6] that for these
functions the correlation function is either identically
vanishing after one iteration of T or decays as slowly as
1/n. Many examples of such slow decay can be exhibited
in this class of observables.
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FIG. 2. Subsets with power-law rate of mutual mixing.

Similar properties apply also to mutually mixing
subsets. The subsets E;, described above, have mixing
properties with the same rate as the rate of decay of the
correlation function.

It is an interesting problem to know if one can find in
this system a class of subsets with an exponential rate of
mixing.

We may, in fact, describe such a class of subsets
which we denote A.o. We introduce a preliminary class
of subsets which are constructed as follows. The class of
subsets obtained in translating along x an arbitrarily given
subset of the y axis Ap by some function h(x), that is,
its section b„, is equal to hp + h(x) (see Fig. 3). It can
be shown [7] that for any pair of translating subsets by
the same function h(x) the mixing is achieved after only
one iteration; that is, two such subsets E and F satisfy
p, (E & T "F) = p(E)p, (F) for any n ~ 1. Therefore, a
finite partition into two sets, E and its complement E'
satisfying this equation, is called pairwise independent
partition (not to be confused with independent partition).

Now, we call the 5 subset a translation of some 50
by h(x), where h(x) is of the form H(e") and H has
analytic continuation in some annulus containing the unit
circle [e.g. , h(x) = a sin(x)]. The subsets of the class A.p

are finite unions of disjoint 6 subsets (Fig. 4). It can
be shown [7] that the rate of mixing of these subsets

is exponential. This implies that for any observable of
the form f(x, y) = Pn;gE, where [E;) is a partition of
the phase space with E; E A.o, the correlation function
decays exponentially.

Thus, the family of random variables (with respect to
the measure dp, ) f„(x,y) = f(T"(x, y)) defines a station-
ary stochastic process on finite state space with values
(n;), which is a factor of the dynamical system (T, p, ), so
it also has zero entropy. Therefore, this example illus-
trates a rather strange situation of a finite-state stationary
stochastic process with zero entropy and exponentially de-
caying correlation function. It will be further considered
in the next section.

From these examples, we observe that the rate of
mutual mixing is related to the smoothness of the border
of the subsets. Thus it is expected that a power-law
mixing rate could be related to some discontinuity, or
even fractality, in the border.

Linear least squares prediction. —In the previous sec-
tion, we displayed a class of stationary processes f„ taking
a finite number of values, with an exponentially decaying
correlation function. It is easy to show that if the correla-
tion function of some observable f decays exponentially
then the spectral measure dp, f is of the Lebesgue type
with a density S(tp) analytic in some annulus containing
the unit circle; that is, it is of the form S(cp) = G(e'"),
where G has analytic continuation in some annulus con-
taining the unit circle. This property has strong conse-
quences in relation to the prediction theory.

In the linear least squares prediction theory [3], one
considers a stationary stochastic process (f„),observed in
the past, n, , n —1, n —2, . . . , and one defines the predictor
of the next issue f„+t as the orthogonal projection of f„+t
on the closed subspace generated by f„,f~ —&t, fn z, —

with the standard scalar product in L~ .
If we denote by P, the associated orthogonal projection

operator, then the predictor of f,+t is P„f„+j. The
process is predictable if f„+~ is equal with probability 1

to its predictor, that is, if with respect to the norm in L
~~ f„+t —P„f„+~((

= 0. Szego gave the expression of the
above distance in terms of the correlation spectral measure
(see [8]). Let us suppose that the spectral measure of the
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~ ~ y ~ ~ ~ ~ ~
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~ ~
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FIG. 3. Translation of a subset ho by a function h(x).
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FIG. 4. Subsets with exponential rate of mixing.
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process is absolutely continuous with a density S(to); then
the Szego formula gives

II f,+g
—P f +&II = expl

The left side is equal to zero if and only if the integral of
IogS(to) over the unit circle is divergent.

In the examples presented in the preceding section,
the correlations decay exponentially so that the power
spectrum S(to) is of the form S(co) = G(e' ), where G
is analytic in some annulus containing the unit circle.
Therefore, G has a finite number of isolated zeros,
e'"', e'"', . . . , e' . This implies that S(co) is continuous
and the cu s are the only isolated zeros of S. Thus
the integral of IogS(co) is convergent if it is convergent
in the neighborhood of each zero. This is indeed the
case, for in this neighborhood we have G(e' ) = (e'"—
e' ) 'H;(e'"), where H; is continuous and nonvanishing
in the neighborhood and m; is of the order of zero. Thus
we may also write S(to) = (co —co;) S, (co), where S; is
also continuous and nonvanishing in the neighborhood
of zero. But flog~co —to, ~dto is finite around co; so
the integral of logS(co) is finite around co = co;. This
shows that the processes with exponentially decaying
correlations are nonpredictable.

Concluding remarks. —Dynamical systems with posi-
tive Kolmogorov-Sinai entropy have an absolutely con-
tinuous part in their spectrum of the Lebesgue type with
countable multiplicity. Sinai has shown [5] that they,
moreover, generate symbolic dynamics (with finite alpha-
bet or finite partition) which correspond to Bernoulli pro-
cesses. For the transformation T ~ with zero entropy,
the system generates stationary processes with finite par-
titions, not as chaotic as a Bernoulli system, but with de-
caying correlations and various rates of decay.

Another important problem is to study the evolution
of the probability densities which are given here by a
Liouville-like equation, p, ((x, y)) = po(T '(x, y)).

One of the outstanding problems in this respect is to
define entropy production in terms of the microscopic
dynamics. Such an entropy can be associated with a
coarse graining which defines a projection operator P of
averaging over the cells of some partition. In this respect
the main problem is to ensure that the coarse-grained
entropy

S, (po) = — P p, ((x, y)) logP p, ((x, y)) dx dy

is monotonically increasing to an extremum only reached
by the uniform density (the so-called Boltzmann H
theorem). Such a coarse graining exists naturally in K
systems as shown by Goldstein, Misra, and Courbage (see
Ref. [9] and references therein) where the cells of the
partition are uncountable, each having zero measure.

In Ref. [10], the coarse graining was considered with
respect to cells each having positive measure. It turns out

that this is the case if the symbolic dynamics generates
a stationary process satisfying the Chapman-Kolmogorov
equation with an aperiodic transition matrix. It is well
known that this equation is satisfied by Markov pro-
cesses. But a Markov process with aperiodic transition
matrix implies positive K-S entropy of the dynamical
system. Nevertheless, the Markov property is only suf-
ficient but not necessary for the Chapman-Kolmogorov
property, and, furthermore, the stationary stochastic pro-
cesses which satisfy the Chapman-Kolmogorov equation
are non-Markovian, having infinite memory [11]. The
partitions which are pairwise independent above noticed
in the transformations T p are examples of such symbolic
dynamics. The coarse graining with respect to this par-
tition leads to an H theorem, which reaches equilibrium
after one iteration. It would be interesting to construct
Chapman-Kolmogorov partitions which are not pairwise
independent for the transformations T „, or for a more
general class of transformations. In general, it can eas-
ily be shown that the Chapman-Kolmogorov property
with aperiodic transition matrix implies exponential decay
of the correlations [12], and, as a consequence, nonpre-
dictability. Therefore, while chaotic dynamics with ex-
ponential instability is sufficient to imply an H theorem,
the weaker condition of the Chapman-Kolmogorov prop-
erty enlarges the 0 theorem to a class of nonchaotic sys-
tems. But, as it implies nonpredictability, we have again
as a limitation imposed by the irreversibility some intrin-
sic randomness of the dynamics.
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