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Waves and Solitons in the Continuum Limit of the Calogero-Sutherland Model

Alexios P. Polychronakos*
Theory Division, CERN, CH-1211, Geneva 23, Switzerland

(Received 9 November 1994)

We examine a collection of particles interacting with inverse-square two-body potentials in the
thermodynamic limit. We find explicit large-amplitude density waves and soliton solutions for the
motion of the system. Waves can be constructed as coherent states of either solitons or phonons.
Therefore, either solitons or phonons can be considered as the fundamental excitations. The generic
wave is shown to correspond to a two-band state in the quantum description of the system, while the
limiting cases of solitons and phonons correspond to particle and hole excitations.

PACS numbers: 03.40.Kf

There has been much recent interest in the Calogero-
Moser-Sutherland model of interacting particles in one
dimension [1—3] (which is often referred to in the physics
literature as the CS model). This model is related to
quantum spin chains with long-range interactions between
the spins [4], wave propagation in stratified fluids [5],
random matrix theory [2,6], and fractional statistics [7].

The CS model is exactly solvable in both the classical
and the quantum regime. Remarkably, the quantum so-
lution is much easier to interpret, exhibiting a straightfor-
ward analogy to the free fermion case. In a recent paper,
Sutherland and Campbell examined the classical system in
the thermodynamic limit and identified the excitations [8].
It was found that the classical system has solitons, corre-
sponding to a single particle running through the rest of
them, as well as small-amplitude waves (phonons), iden-
tified with holes. The purpose of this paper is to derive
large-amplitude wave and soliton solutions of the classical
system in the continuous limit, where the particles form a
"Quid" and examine their correspondence to the quantum
states.

We consider a collection of particles with the Hamil-
tonian

+
i=1 i)j I J

where for convenience we chose them of unit mass. In
principle, such a system can be put in a box of length
L (with an appropriate modification of the potential [2]).

We shall be interested in the limit N, L ~ with N/L
fixed. In this limit, the system can be described in terms
of a density field p(x) and a velocity field v(x). At
equilibrium, the particles will form a regular lattice of
spacing a and density po = 1/a. The particle current is
J = p v and by particle conservation

p + dj = p + a(pv) = 0,
where &3

= 8/rex. The kinetic energy of the system is
1K= dx2pv.

(2)

We can formally solve Eq. (2) for v to obtain v =
' p/p, and the expression for the kinetic energy

becomes

(~
—j )2K= dx (3)
2p

This is exactly the kinetic term of the collective field
Hamiltonian description of a many-body system [9]. The
potential energy can also be expressed in terms of the
density. The naive expression, however, which would be

d d g p(x)p(y)
dx dy

2 (x —y)~

is incorrect. The reason is that the interaction is singular
at coincidence points, and thus a substantial part of the
potential energy comes from nearest neighbors and is not
accurately reproduced by the naive continuous expression.
The correct expression requires a careful conversion
of the discrete sum in terms of the continuous fields.
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The first term, which accounts for the interaction of each
particle with its few nearest neighbors, is the dominant
one in the limit where the scale of variation of p is much
larger than the lattice spacing. In our case, however, we
are interested in finite-width fluctuations, and we must
keep the full expression.

The dynamics of the system can be found by varying
the Lagrangian L = K —U + p, p with respect to p.
The chemical potential p, plays the role of a Lagrange
multiplier ensuring that the total number of particles
remains constant. The resulting equations of motion are

~2 2

p +

gpss

+ — +

+ p, =0, 6

as well as Eq. (2). The inverse derivative operator in

Eq. (6) is defined in terms of the principal value in Fourier
space 8 ' = lim, ok/(k + e ). In particular, acting on
a constant it gives zero. By requiring that the static
configuration v = 0, p = po be a solution of Eq. (6), we
obtain the value of the chemical potential

p = (~'g/2) po (7)

V —
2 V

This is in agreement with the value obtained from the
exact solution of the many-body problem [2,8].

Small-amplitude waves. —From the above equations
we can obtain the dispersion relation in the linearized
regime of small-amplitude waves, which we shall call
phonons. Noting that the Fourier transform of 6p is
7r

I
k

I p (k), we obtain

v,'„„,= (cu/k)' = (g7r po —lkl/2)'

or

Alternatively, we can simply take the classical limit (6
0) of the quantum mechanical expression derived in the
collective field formulation [10]. The result is

~'g 3 g g (~p)'
dX' p ——polp +

6 2 8 p

where p stands for the Hilbert transform

cu = (v,
' —v )/2~g. (10)

B(vp —vp) = 0, P Po v.

In the above, the integration constant is fixed by the
boundary condition that v 0 at x ~ ~~, where p
po. Similarly, Eq. (6) becomes

rpo l ~g
2 (p~ ) 2

+ (p —po) —g &p-

g r~p&'
8 kp)

r~p' I=0.
4

(12)

To guess a solution for Eq. (12) of the form p,,~

——

po + 6p, where 6p is localized, we notice that the
term in Eq. (12) containing the Hilbert transform will
always produce out of a localized function a tail falling
off quadratically. Thus, 6p itself should have such a
behavior at infinity. The simplest function of this form
1s

p„i ——po + A/(x' + 8').

Plugging the above form into Eq. (12) we find, after an
amount of algebra, that it is indeed a solution, provided
that v ) v, and

We observe that Eqs. (9) and (10) are the exact results.
The group velocity is always smaller than the velocity of
sound, and the above linearized waves can be identified
with holes in the quantum theory. Notice that the
above formulas are valid for lkl ~ 7r po = 7r/a, else
the group velocity turns negative. This is reasonable,
since the above condition restricts the momentum to the
fundamental region of the Brillouin zone, thus avoiding
umklapp.

Solitons As.—observed in Ref. [8], the many-body

system should exhibit soliton solutions, corresponding to
particle excitations. On the other hand, in Ref. [11] an
equation similar to Eq. (6) was written for a system of
free fermions, coming from an effective Lagrangian. This
equation has solitary wave solutions [11]. As we will
demonstrate here, our Eqs. (6) and (2) also have solitary
wave solutions of a rational type; we shall call these
solutions solitons and will comment later on their true
nature. For a localized constant profile configuration,
propagating at speed v, both p and v are functions of
x —vt only. From Eq. (2) we have

cu = ~g(~polkl —k'/2). (8)

v~ = 7Tpo Jg . (9)
In terms of the group velocity vg the dispersion relation
becomes

From Eq. (8) we deduce that the velocity of sound v„
defined as the phase (or group) velocity in the long-
wavelength limit, is

7T po 7T po

0
p~o] = po 1+

(7r pox)' + u2 )
'

We finally arrive at the soliton profile

v2
S

v2 v2
5

v2
H

v2 v2
5

(13)

(14)
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The above solution is, strictly speaking, a solitary wave.
Since the initial many-body system (1) is integrable, we
expect the corresponding continuum system to be also
integrable, although a direct proof is lacking, and thus
Eq. (14) to be a true soliton. This is corroborated by
the correspondence of these solutions to particles, as
demonstrated below.

The above soliton carries particle number Q, momen-
tum P, and energy F, defined as the extra amount over
the static solution pp. We find

p -. —
pp = g I.p..l(x —nA) —po]

Q =—Qc

=1 sinh(2u/Apo)
A cosh(2u/App) —cos(27rx/A)

'

where now the parameter u is not necessarily given by
v2/(v2 —v2), since the proximity of the other solitons
may have changed their common velocity. The above
wave form is characterized by its amplitude A, defined
as midway the distance from peak to trough,

dx (pso] pp) 1 ~
pmax p min 1

A sinh(2u/App)

dx p80) v = v

dx I:&(p-1) + ~(p-~) —1'(po)] = —, v'.

(15) as well as by its wavelength A. Substituting the form (16)
into Eq. (12) we find, again after quite a bit of algebra,
that it is indeed a solution provided

We observe that the net particle number carried by soliton
is 1, independent of its velocity; its momentum and energy
are also those of a free particle of unit mass moving at the
soliton velocity v. Therefore, the soliton can be exactly
identified with a particle excitation of the system. Again,
this is in agreement with exact results drawn from the
quantum theory, where particle excitations always move
faster than sound [8]. Notice, further, that the solitons
become thinner as their velocity increases, while their
spread diverges as they slow down to the velocity of
sound.

The above result for Q implies that the displacement
of the equilibrium lattice far away from the soliton is
+. half lattice spacing either way (so that there is an
excess of one particle near the soliton). This result as
well as the form of the soliton (14) is at odds with the
results found in Ref. [8]. We suspect that the source of
the discrepancy is the truncation to a finite number of x
derivatives of the form for the potential in Ref. [8]; this
turns the equation to a local one and gives the soliton an
exponential decay, rather than the inverse-square decay of
the nonlocal equation. We also notice that our soliton has
some important qualitative differences from the solitons
in the semiclassical fermion theory of Ref. [11]: Our
solitons carry a positive particle number of 1, as opposed
to a negative particle number in Ref. [11], which would
rather identify them as holes. Further, there are no static
solitons in our case, since IvI ) v„while in Ref. [11]
solitons can slow down to zero speed. Finally, the
definition of momentum used in Ref. [11] differs from
ours by a surface term. Clearly Eq. (15) is the physically
sensible definition in our case.

Finite-amplitude waves. —Soliton profiles moving at
very large distances from each other will obviously
remain solutions. If we could form a state consisting of a
sequence of solitons at regular distances spaced by A, all
moving with the same velocity v, we would have found
a large-amplitude wave solution with wavelength A. We
thus try the form

2u
tanh

App

2Appv

A' pp (v' —v') —v' (18)

1 1
pwave = pp + —1 I

( dA A + 1 —AA cos(2vrx/A) )
(19)

and the nonlinear dispersion relation in terms of the
amplitude A is

vs
~~g l 2A2(A p —1)

1 +
pp (1 + QA2A2 + 1)

(20)

In the limit A ~ the above equations reduce to the
single soliton solution. In the limit A ~ 0, on the other
hand, the above formulas become

p = pp + Acoskx,

v = cu/k = v, —(~g/2) k, (21)

The above is the amplitude-dependent dispersion relation
for the nonlinear waves of the system. Before we
interpret it, however, we must note the following: The
conventions used for deriving Eq. (12) were that the
solution p carries some particle number and momentum
on top of the "vacuum" solution pp. This is reasonable
for an isolated soliton, but rather inconvenient for a wave
solution, which is thought to be a fluctuation carrying no
net particle number and no net momentum (no drift). But
the presence of the solitons in Eq. (16) adds one particle
per length A, and thus the true equilibrium density of
the system is pp + 1/A. Further, the solitons contribute
a momentum v per length A; to neutralize it, we must
boost the whole system in the opposite direction by an
appropriate amount. After performing these redefinitions,
the expression for the wave in terms of the true velocity v
and true background density pp is
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(22)

which is the small-amplitude wave solution and dispersion
relation. We see, therefore, that the above solutions
interpolate between the two extreme cases. We stress that
the generic wave can run either faster or slower than the
speed of sound.

In summary, we have found exact soliton and wave
solutions for the CS system in the continuum limit.
Certainly the above do not exhaust the list of solutions;
the general motion of the system will be a nonlinear
superposition of waves (or solitons).

It is instructive to put the above solutions into corre-
spondence with the quantum mechanical states. Consider
N particles in a space of length L. The ground state of
the system consists of a "Luttinger sea" in the pseudomo-
mentum, with spacing between adjacent particles equal to
2vrZ/L and "Fermi level" 7rZN/L, where g = Z(Z —6).
At the limit 6 ~ 0, N, L ~, N/L ~ po, the ground
state becomes a continuous filled band with Fermi level
PF = ~~gpo. A small-amplitude wave, corresponding
to a hole, is a very small gap in the band. A soliton,
corresponding to a particle excitation, is a single parti-
cle peeled from the Fermi level and placed some distance
above. The generic finite-amplitude wave corresponds
to a state with ~o continuous filled bands of widths P~
and P2 (with Pl + P2 = 2PF) and with a gap G between
them. These are related to the wave parameters as

27r ~g
P]

2 77 g po

Such a state can be visualized as arising either by
successively exciting single particles by the same constant
momentum until they form a continuous band or by
gradually augmenting the gap of a hole until it becomes
finite. This state can thus be thought of either as
a coherent state of solitons (much like the way we
constructed the wave solution) or as a coherent state
of phonons, their nonlinear nature accounting for the
change in profile as they accumulate. Indeed, the soliton
itself can be thought of as a superposition of many
phonons with very large wave number and the phonon
as a superposition of many solitons just above the Fermi
level. For the finite N (finite L) system the distinction
between the two is fuzzy and, in principle, only one kind
of excitations need be considered as fundamental. Note,
further, that quantum mechanically the holes behave as
particles with fractional statistics of order R/8 (meaning
that 8/h of them put together would form a fermion). At
the classical limit R ~ 0, thus, they become bosons, as
they should be since phonons obey no exclusion principle.
Particles, on the other hand, carry statistics of order 4/h.
Thus in the classical limit they become "superfermions, "
meaning that no two of them can occupy relatively nearby
quantum states. This is consistent with the inverse-square
repulsion between the classical particles.

The above results are of direct relevance to the large-N
limit of one-dimensional free matrix models. The particu-
lar wave and soliton solutions correspond to motions of the
density of eigenvalues in the unitary and Hermitian mod-
els, respectively. Taking, for clarity, the Hermitian case,
the motion of a free N X N matrix M with angular mo-
mentum 4 is

Mjk = B~g(pjt + a~) + (1 —6jt)
Pj Pk

The situation where most of the eigenvalues lie on a regular
lattice with only one of them moving with velocity v is
reproduced by choosing

2~1 . N
Pj a(N —2) 2j —— (for j ( N),

pjv =v a =0.J (24)
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(Notice that the above momenta pt, . . . , p~ t span the
values between the two Fermi levels ~7rZ/a. ) It should
be possible to prove analytically that the eigenvalues of
Eq. (23) with parameters (24) have a density given by our
soliton solution, but in practice this is a very hard task. The
corresponding problem for unitary matrices is even harder
to tackle, while our wave (19) readily provides the solution.
Many-soliton solutions will be given by eigenvalues of
Eq. (23) with, now, more then one of the momenta p,
taking values equal to the velocities of the solitons, while
the rest span the Luttinger sea.

We conclude by noting that the quantum mechanical
problem separates into two noninteracting chiral sectors
having to do with excitations near either end of the
Luttinger sea. (The two sectors mix nonperturbatively
when a number of particles of order N is excited, depleting
the sea.) Therefore, Eq. (6) governing the continuum
system should also decompose into two nonmixing, first
order in time equations, one for each sector. For the
corresponding equation for free fermions this is indeed the
case [12]. In fact, from the collective field description of
the system when only one chiral sector is present [13],
we deduce that the chiral equations are exactly of the
Benjamin-Ono type [5]. The exact field combinations in
terms of which this decomposition would be achieved,
however, are not known and constitute an open problem.
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