
VOLUME 74, NUMBER 25 PH YS ICAL REVIEW LETTERS 19 JUNE 1995

No Perfect Two-State Cellular Automata for Density Classification Exists

Mark Land and Richard K. Belew
Department of Computer Science and Engineering, University of California, San Diego, la Jolla, California 92093-01l4

(Received 9 January 1995)

Recently there have been many attempts to evolve one-dimensional two-state cellular automata which
classify binary strings according to their densities of l's and 0's. The current best-known approaches
involve particle-based systems of information transfer. A proof is given that there does not exist a
two-state cellular automata which performs the task perfectly. This is true even in multiple dimensions.

PACS numbers: 89.80.+h, 02.70.Rw, 47.11.+j

Since their inception, cellular automata (CA) have
proven to be an extremely austere yet powerful class of
algorithmic specifications. A number of investigations
into the relationship between computational systems and
the physical world have used CA as their foundation t

1—
3], so it is reasonable that recent extensions of this work
to the role of evolution in the physical and computational
worlds would also rely upon CA.

Beyond simple understanding the limits of CA com-
putation, a central motivation for this work concerns the
potential of CA as models of biological phenomena such
as ontogenesis. A defining property of CA is the way in
which their computations depend upon and affect an ar-
bitrarily large global state field, despite the fact that all
of their operations are defined over a finite, local neigh-
borhood. This can be related to the development of a
multicellular organism involving ensembles of billions of
cell types; many of the interactions between these cells
are "local," but each cell develops from and functions ac-
cording to a single, shared, and hence "global" genome.
Moreover, the ensemble is evaluated in terms of the "fit-
ness" of the single organism. In this context, the use of
CA as a model of such emergent computations" is espe-
cially appropriate [4].

A canonical example of such an emergent computation
is to use a locally specified CA to determine the global
density of bits in an initial state configuration. More
specifically, given an arbitrary initial configuration of a
one-dimensional two-state CA, the CA should converge
to a state of all 1's if the initial configuration contains a
density of 1's ~p, and to all 0's otherwise, for some p
between 0 and 1. In what follows, we will assume for
convenience that if n is the size of the one-dimensional
lattice, pn is not an integer.

The best known solution to this problem for p = 1/2
is the Gaks-Kurdyumov-Levin (GKL) rule [5]. The basic
strategy taken by GKL can be viewed as consolidating
regions of local homogeneity, and sending "signals" to
ambiguous regions. Solid blocks of 0's or 1's convert
adjacent undecided areas to their own state. Signals
are sent in the form of stable "particle" structures that
propogate along the string. In this way local information
can be transmitted to far away parts of the CA. The

GKL rule is almost always successful on configurations
with high or low densities, but there is a combinatorial
explosion of configurations with densities very close to
1/2, and these give GKL considerable trouble.

Attempts to evolve CA that solve this task have oc-
cupied a number of investigators. Mitchell, Hraber, and
Crutchfield [6] used the genetic algorithm to find so-
lutions to this problem for p = 1/2. They were suc-
cessful in finding solutions that were nearly as good as
GKL. Solutions were tested by picking random initial
configurations with a uniform distribution over densities.
This eliminated the problem of the combinatorial explo-
sion of cases with density close to 1/2. With this distri-
bution, their best solution was correct about 95% of the
time, compared to 97.8% for GKL, on lattices of size 149
(more recent work by Mitchell has achieved better results,
but still no better than GKL [7]).

Experiments of our own evolving CA for the density
classification task using a different representation have
resulted in an automaton that may be in some ways
superior to, but is roughly comparable with, that found
by Mitchell. Our solution was correct 97.8% of the
time on the uniform density distribution test described
above, comparable to GKL. A major advantage of our
solution is that it converges much faster than GKL on
many initial configurations. Our difficulties in evolving
even better solutions led us to wonder whether such a
CA actually exists. The central result of this paper is
that for a one-dimensional lattice of fixed size n, and for
a fixed r) 1, there exists no two-state CA rule defined
over radius r which correctly classifies all possible initial
configurations.

Theorem. —For a given neighborhood radius r, density
p, and lattice size n such that N) max[4r/p, 4r/(1—
p)], there does not exist a two-state CA rule of radius r
which correctly classifies every configuration of size n for
density p.

The proof will be by contradiction. First we will as-
sume a perfect CA rule exists, and we will use lemmas
to consider a sequence of perverse initial configurations
which cannot all be handled correctly by it. Let R* denote
some CA rule which is perfect for doing p classification
on lattices of size n. We begin by considering the behav-

5148 0031-9007/95/74(25)/5148(3)$06. 00 1995 The American Physical Society

VOLUME 74, NUMBER 25 PHYSICAL REVIEW LETTERS 19 JUNE 1995

ior of R* on "solid" blocks of 1's or 0's, then demand that
the perfect rule never causes the lattice density to cross
the p threshold. We then focus on configurations of the
general form 0'1~, where, of course, the most important
CA transitions involve the discontinuity between 0 and 1

solid blocks, especially when we are near the threshold

j /n = p density. Finally, we consider the behavior of R*

on configurations where the critical additional 1 pushing
density above p is buried within the solid block of 0 s.

Lemma 1.—Given any configuration in which the
density of 1's is less than (or greater than) p, R~ will
keep the density of 1's less than (greater than) p at the
next cycle, and for all future cycles.

Proof: For density (p, note that R* will eventually
take any configuration with a density greater than p to all
1's. Therefore, if a configuration with density less than p
is taken to a configuration with density greater than p, it
will eventually be classified as all 1 s, which is incorrect.
This contradicts the perfectness of R*, and so proves the
lemma.

The proof for density ~p proceeds analogously.
Lemma 2.—In a given configuration, if a cell and its r

neighbors on each side are all 0 (or all 1) then at the next
cycle the cell will still be 0 (or 1).

Proof: Consider the configuration which is all 0's
(or all 1's). By the definition of the problem, this
configuration must remain unchanged at the next cycle
(under the action of R*). Since this must also be true
of every length 2r + 1 substring of the configuration, the
lemma is proven.

Lemma 3.—Given the configuration

cr~ = 0'1~

with i, j ~ 2I" and i + j = n, number of cells 0 to n —1

(so that cells 0 to i —1 are 0's and cells i to n —1 are
1's). Then at the next cycle, cells r to i —r —1 will be
0, and cells i + r to n —r —1 will be 1.

Proof: This lemma follows immediately from
Lemma 2.

Lemma 4.—There exist binary strings a, P, and y,
with lengths r, 2r, and r, respectively, such that for any i
and j with i, j ~ 2I" and i + j = n, R* will take 0'1~ to
nO' "Pl' 2"

y on the next cycle.
Proof: Lemma 3 guarantees that cells r to i —r —1

will be 0's and cells i + r to n —r —1 will be 1's. All
that is left to show is that n, P, and y are the same for
all satisfying choices of i and j. First consider P, which
contains the values of cells i —r to i + r —1. The
most extreme elements of P, cells i —r and i + r —1,
themselves depend only on neighborhoods also of radius
r. Hence the value of P is completely determined by
the values of cells i —2r to i + 2r —1 at the previous
cycle. But for any allowed i and j, these cells contain
02" 1 ". Therefore P is independent of the values of i and

j. The same argument applies for a and y.

Lemma 5.—Given any p ~ 1/2, n ~ 4r/p, and i, j
such that i, j ~ 2r, i + j = n, R* will take 0'1~ to
n 0' 2"P 1' 2"

y on the next cycle, where the string n P p
has exactly 2r 0's and 2r 1's.

Proof: Consider the special case of configuration o.
&

for which j = [pnJ I. n other words, there are exactly
enough 0's so that the density of 1's is less than p. In
the next cycle, R* must keep the density of 1's below p
(by Lemma 1), and so the number of 0's must stay the
same or increase in the next cycle. As long as i and j
are both ~2r, we can apply Lemma 4. This tells us that
0'1' is taken to nO' 2"Pl' ~"y in one cycle. Therefore,
it must be the case that the number of 0's in n P y ~ 2r,
in order for the total number of 0's to be ~i.. Note that if
pn) 2r, then i, j ~ 2r, because p ~ 1/2.

Now consider the complementary case 0' 1~, where
j' = [pnJ + 1 (and i' + j' = n); there is exactly one
more 1 and one less 0 than in the above configuration,
and now the density is greater than p. This time the
density must be kept above p, and so the number of 0's
must stay the same or decrease in the next cycle. If we
again assume pn) 2r then i', j' ~ 2r, and we can apply
Lemma 4. This time we deduce that the number of 0's
in nPy ~ 2r. Taken with the previous paragraph, and
noting that ~nPy ~

= 4r, this completes the proof of the
lemma.

Lemma 6.—Applying R* to 0" '1 for a single cycle
results in a string which has either zero 1's or more than
one 1.

Proof: Assume that the resulting string had a single
1. Then this would be the same as the original string,
perhaps shifted to the left or right. Therefore applying
R* again would have the same effect, and there would
be exactly one 1 after two cycles, and again after three
cycles, etc. At any time, there would be a single 1, and
so the computation would never converge to all 0's, as
required by the problem definition.

Consider the configuration that results from changing a
single 0 to a 1 in the middle of the 0 block in o.i'.

02"]0' 1J (2)

o3 = n60' ' "Plj "y,

Let j = [pnJ and i + j = n Also .assume n is large
enough that i —1 —2r ~ 2r. This will be the case if
(1 —p)n) 4r. Then this string has just enough 1's
to make the density greater than p. Compare this to
o.&, which has just enough 0's to make the density less
than p.

o.2 is exactly the same as o-&, except for the cell in
position 2r. Therefore, after one cycle, the two strings
will be the same, except for cells r to 3r, which are
the only cells that can be affected by position 2r. But
by Lemma 4, o.

& will be taken to nO' 2'P 1' ~"y in one
cycle. This means cr2 will be taken to

5149

VOLUME 74, NUMBER 25 PH YS ICAL REVIEW LETTERS 19 JUNE 1995

where 6 is some string of length 2r + 1. (We know that
i —1 —4r) 0 because we specified that i —1 —2r)
2r.)

We gain insight into what 6 is by considering the very
simple configuration 0" '1. By Lemma 6, there are two
possibilities. Either 0' '1 is taken immediately to all 0 s
or it is taken to a string with multiple 1's on the first cycle.

Assume it is immediately taken to all 0's. This means
that in any configuration in which there is substring of
cells 0 "10 ', the middle 2r + 1 cells will become all 0's
at the next cycle. This, of course, applies to o-2, and tells
us that 6 = 0 '+' in o3. But this implies that o.2 and a]
are both taken to n0' 2"Pl' "7, which is a contradiction,
since they have densities on either side of p and must
be classified differently. Therefore our assumption that
0 '1 is taken immediately to all 0's must be wrong.

The only other possibility is that 0" '1 is taken to a
string with multiple 1's in a single cycle. These 1's must
all be in cells within r of position n —1, due to Lemma 2.
And, in fact, in any configuration in which there is the
substring 0 '10 ', the middle 2r + 1 cells will contain
more than one 1 at the next cycle.

Finally, we are in a position to consider a simple but
deadly configuration for R*. Consider

—02T 10l —2~14 —]04 (4)

[again with (1 —p)n) 4r] This has j.ust enough 0's so
that the density is less than p. By using Lemma 4 and
arguing as we did for o-2, we see that after one cycle o4
will become

where 6' is a string of length 2r + 1. We can see
from the preceding paragraph that 6' must contain at
least two 1's. Using Lemma 5 we can conclude that the
total number of 1's in o5 is)(j —I —2r) + 2r + 2 =
j + 1. But j + 1 = [pn] + I, so the density of o.s is
greater than p, which contradicts Lemma 1.

We have shown that no matter what R' does to 0" '1, it
leads to a contradiction and the theorem quickly follows.

Proof (of theorem): For p (1/2, if we take pn)
4r then the assumptions made in the discussion above
[specifically, pn) 2r and (1 —p)n ~ 4r] are valid, and
we are done. For p) 1/2, the proof is analogous, and
the condition on n is (1 —p)n) 4r.

Note that the restriction on the size of n in the theorem
is not tight, and, in fact, for p (1/3, the proof is given
requires only that n) (2r + 1)/p. Likewise for p)
2/3, it is sufficient to have n) (2r + 1)/(1 —p).

Although the proof given is for one-dimensional CA,
it can easily be extended to the multidimensional case.

If the initial state values vary along only one of the
dimensions, this property must be maintained at each
successive time step. The argument used for the one-
dimensional case then applies to the entire n-dimensional
lattice.

In conclusion, this paper proves that no two-state CA
can do the density classification task perfectly. However,
it says nothing about how well an imperfect CA might be
able to do. Empirically, the best known solutions seem
to correctly classify only about 80% of all possible ini-
tial configurations (this is in contrast to the uniform den
sity distribution test described earlier), with performance
worsening for larger lattices. Short of perfect density
classification, does there exist a theoretical bound for two-
state CA?

A related question concerns the nature of the mistakes
made. Informal experiments suggest that the GKL rule
(and the evolved rules) misclassifies only configurations
whose densities are within some e of 0.5, with e decreas-
ing as lattice size increases. If this e can be made small
enough, then the CA can be used as a sort of measurement
device. In general, do there exist CA rules which err only
within e of p? What are the bounds on how small e can
be, as a function of lattice size?

It would also be interesting, though probably much
more difficult, to generalize the results of this paper to
CA with more than two states. Is there a number k,
independent of the width of the lattice, such that some
CA with k states can solve the problem for all cases on
arbitrarily large lattices? We are especially interested in
situations where only some of each cell's state bits are
"visible" to neighboring cells, and the rest hidden. For
example, with only one visible bit, this extension is very
similar to the situation dealt with in this paper, but where
each cell is allowed some memory.

[1] C. Langton, Physica (Amsterdam) 42D, 12—37 (1990).
[2] Cellular Automata Machines: A New Environment for

Modeling, edited by T. Tommaso and N. Margolus (MIT
Press, Cambridge, 1987).

[3] Theory and Applications of Cellular Automata, edited by
S. Wolfram (World Scientific, Singapore, 1986).

[4] Emergent Computation: Self organizing, Collec-tive, and
Coopevative Phenomena in Natural and Artificial Com
puting Networks, edited by S. Forrest (MIT Press, Cam-
bridge, 1991).

[5] P. Gaks, G. L. Kurdyumov, and L. A. Levin, Probl.
Peredachi. Inform. , 14, 92—98 (1978).

[6] M. Mitchell, P. T. Hraber, and J.P. Crutchfield, Complex
Systems 7, 89—130 (1993).

[7] M. Mitchell (private communication).

5150

