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Double Exchange Alone Does Not Explain the Resistivity of Laq Sr Mno3
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The Lai Sr Mn03 system with 0.2 ~ x ( 0.4 has traditionally been modeled with a "double-
exchange" Hamiltonian in which it is assumed that the only relevant physics is the tendency of carrier
hopping to line up neighboring spins. We present a solution of the double-exchange model, show it is
incompatible with many aspects of the data, and propose that in addition to double-exchange physics a
strong electron-phonon interaction arising from the Jahn-Teller splitting of the outer Mn d level plays a
crucial role.

PACS numbers: 75.50.Cc, 72.10.Di, 75.30.Et

The La& A Mn03 system (A represents a divalent al-
kali element such as Sr or Ca) has attracted much recent
attention because of the very large magnetoresistance ex-
hibited for 0.2 ~ x ( 0.4 [1]. Treatments [2—4] of the
physics of this system have focused primarily on the phe-
nomenon of "double exchange" [5]. In this Letter we solve
the double-exchange model and deduce several experimen-
tal consequences which, we show, disagree with data by
an order of magnitude or more. The discrepancy must be
resolved by including additional physics, which we sug-
gest involves polaron effects due to a very strong electron-
phonon coupling coming from a Jahn-Teller splitting of the
Mn + ion. We mention several experiments which would
verify or falsify our suggestion.

In La& A Mn03 the electronically active orbitals are
the Mn d, 2 —y2 and d3,. „2 orbitals [6]. The mean number
of d electrons per Mn is 4 —x. The Hund's rule coupling
is believed to be very strong relative to the d-d hopping
and the spin-orbit coupling [7] so the spins of all of the
d electrons on a given site must be parallel. Three of
the d electrons go into tightly bound corelike d,~, d z dyz

orbitals forming a core spin S; of magnitude 2, to which
the outer shell electron (which may hop from site to site)
is aligned by the Hund's rule coupling. The Hamiltonian
containing this physics is

ab ~ M "c
Hd-ez = ~ ti ' dizndjbn JH ~ Si ' diz~ motpdiap ~

(ij )a,b, u imp (1)

Here d;, creates an electron in an outer-shell orbital
state a, b = x —

y or 3z —r and spin n, JH is the
Hund's rule coupling connecting the core spin to the
outer-shell electrons, and the appropriate limit, which we
shall take, is JH ~ ~. To study Eq. (1) we parametrize
S,' by polar angles 0, , P;, rotate the electrons so that
the spin quantization axis at site i is parallel to S;, and
project onto the spin component parallel to S,'. The
matrix R, which accomplishes this is R; = (cos0;/2) 1 +
i sin(0;/2) sin@; o' + i sin(0;/2) cos@; cr~ The electrons.
may be integrated out, and the partition function Z written
as

'D cos0 23@;exp%. , (2)

with action A. given by

~ = Tr in[A, —p, + R,+B,R; —t,
' (R, RJ + RJ R;)]11

+ iS, dr P P;(I —cos0;) . (3)

Here the first term comes from integrating out the electrons
and the second is the Berry phase term for the core spins.
The subscript 11 expresses the requirement that as J& ~ ~
the outer shell electron must be parallel to S, . At low T
we may expand about the ordered ferromagnetic state 0; =
0. The effective action becomes A. = A.~ + A, A.F
is the free energy for free fermions moving in the band
structure defined by t;,".A. , may be written in terms
of the magnetization variables M and M~ describing
deviations from the ordered state (with magnetization
taken parallel to z) as

B d3k
dr

)
iS,

—2Ãaok MI, M I, +

[
~SW

1 x+ Mi, X BM p2

6 (M') .

Here K = P,& t,",+,(c;,c;+;I,) is th-e electron stress-energy
tensor and is related to the integral of the optical con-
ductivity as described below, ao is the lattice constant,
and c; creates a spin polarized electron on site i. Equa-
tion (4) is the action for a quantum ferromagnet with spin
S = S, + (1 —x)/2 and stiffness K. This action implies
that the magnon dispersion is

cu, g
——(K/S*) (ka) (5)

A similar result for the magnon dispersion was obtained
by Kubo and Ohata [3] using different methods.

The quantity K is important because it is the only en-

ergy scale in the theory. A theoretical estimate of K is
K —2tn, where n is the electron density per unit cell
per orbital and t the average hopping energy. A recent
band theory calculation found a bandwidth of 2.5 eV,
implying t —0.2 eV and K —0. 1 eV for x = 0.2 [8].
One experimental estimate comes from the zone bound-
ary magnon frequency, which has been measured to be
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90 meV in La, 7PbQ3MnO~, implying K = 0.045 eV [9].
K may also be experimentally determined from the op-
tical conductivity o.(cu). In a one-band model with only
nearest neighbor hopping fo des o(co) = ~e K/ao [10].
To extract K from conductivity data on a real material
one must remove the interband contributions to cr. Am-
biguities arise because there is often no clear demarcation
between interband and intraband contributions. The op-
tical conductivity of La &,Sr Mn03 has been measured
for x = 0.175 and x = 0.3 [11]. At x = 0.175 and low
T, o.(cu) = (500 p, fl cm) ' = 0.3 eV, independent of co,
and it seems reasonable to assume that for cu ( 1 eV the
conductivity is dominated by the conduction band. Using
ao = 4 A, one finds K = 0.03 eV = 400 K, rather less
than the band structure estimate for x = 0.175. The rough
correspondence between the optical and magnetic mea-
surements of K suggests that the double-exchange model
provides a good representation of the physics at low T,
although to settle the issue a measurement of both quanti-
ties in the same sample is needed.

From K we may estimate the ferromagnetic transition
temperature T, as follows. The cubic lattice Heisenberg
model with exchange constant J has a magnon dispersion
co = 2JS(ka) [12]. The known relation [13] between
J and T, then implies T, = 2.9K(S' + 1)/S*. The band
structure value for K then implies T, = 0.3 eV, while
the optical or magnon value implies T, = 0.1 eV. Both
values are much higher than the observed T, = 200 K for
x = 0.175. The great difference between the observed
and estimated T, implies that additional physics becomes
important as T is raised.

We now consider the double-exchange model in the
regime T —T, . Because the low T properties are those
of a quantum model with S = 2, near T, we may con-
sider classical spins and so neglect the imaginary time
dependence of the angular variables in Eq. (3). The prob-
lem then becomes that of electrons moving on a lattice
with hopping amplitude t,', = t,',"[ cso(0; 2/) cos(8j/2) +
cos(@; —@j)sin(8;/2) sin(6, /2)]. We further assume that
contributions to the partition function in which fermions
move on closed loops in real space may be neglected.
We may then rotate the @; independently and therefore
replace t by the familiar double-exchange form t;,

J" S + S; SJ 2S 5 . We may then replace Eq. 1

by
ab

tjj S, -Sj.
H, ff ~ 1 +

~ (C gCjb i+ H.c.),
ijab ~2 S2

where the S; are now understood to be classical spins.
The free energy function describing the spin distribution
is obtained by integrating out the conduction electrons
at a fixed distribution of spins. This problem is one of
conduction electrons moving in a lattice with fluctuating
hopping; for such problems if is known that to a good
approximation the free energy of the conduction elec-
trons depends only on the average hopping [14] so the
spin energy E((S;)) is given by E([S;)) = Tg„In[1 +—

ej ~'" I"~] with eI, = —2t(cosk, a + cosk~a + cosk, a) and

t 'j 1 + S ' SJ S In parti cul ar, if the tempera-
ture is less than the Fermi temperature of the electrons,

ab

E(/S, )) = —g " 1+, '(c,.c„).
(ij&

l,a J (7)

M(cu, T) = 1

KM
« '"'([H, i],[H, i]o&, (g)
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In other words, the spin energy involves nearest neigh-
bor coupling with scale again set by the electron ki-
netic energy. In the nearest neighbor Heisenberg model
at T„(S; S,)/S = 1/3 [13], so an expansion in S; .

S, /S is reasonable, and we may conclude that the spin
energy is given by the nearest neighbor Heisenberg model,
with J = K/2~2. Thus thermal effects change our esti-
mates of the energy scales by only a factor of ~2, and
the discrepancy between the calculated and measured T,
remains.

We now turn to the resistivity of the model near T, .
The electron-spin interaction in Eq. (6) leads to an elec-
tron self-energy with real and imaginary parts. The real
part leads to a contribution to the electron velocity which
increases as the temperature decreases and expresses the
physics that as (S; S,) increases, so does the electron
hopping. The imaginary part leads to scattering, due
physically to fluctuations in S; - Sj. If the spins are
treated classically, this scattering is mathematically iden-
tical to conventional impurity scattering, and leads to a re-
sistivity proportional to (pFZ) where pF is the electron
Fermi wave vector, and 4 is the mean free path. The mean
free path in this static spin approximation is a purely geo-
metric property determined by the amplitude and spatial
correlations of the fluctuations in S; S, and, in particular,
is independent of the electron velocity. Therefore to com-
pute the resistivity it suffices to calculate the scattering
of the electrons off the spin fluctuations, neglecting the
possibly large velocity renormalization. Because, as we
shall see, fluctuations in S; Sj are small, the scattering
is sufficiently weak that the Born approximation suffices.
Also, because the scattering is static the optical conduc-
tivity must have essentially the Drude form, in contradic-
tion to experiment at T = T, [11]. Finally, Langer and
Fisher [15] have shown that singularities in spin correla-
tion functions at T, cause two types of singularities in the
resistance: One is a contribution dp/dT —~T —T,

~

where n is the specific heat exponent (which is believed to
be slightly negative for the three-dimensional Heisenberg
model); the other is that for T ( T, there is an additional
contribution to the resistivity proportional to M .

There is no rigorous expression for the dc resistivity.
To obtain a reasonable approximate expression we use
the "memory function" method [16]. In this method
one defines the memory function M(cu, T) via o.(co, T) =
(7re~K/2ao) [i cu + M(cu, T)] ' and approximates M as
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where the current operator j is

( 5, 5, )
J = i g v 2t; (c~ejb c~bc~) 1 + (9)

and H is given by Eq. (6). The Heisenberg representation
is assumed, and the subscript on the commutator denotes
the time argument of the operators. This approximation
for M reproduces exactly the leading term in the high-
frequency expansion of o- and, although not rigorous, is
believed to be reasonably accurate at all cu except in special
cases such as proximity to a localization transition or for
one-dimensional models. By definition the temperature
dependent resistivity p(T) = aoM(cu = 0, T)/7re K. In
models such as the double-exchange model, K is set by the
hopping parameter t, and M/K is independent of K and is
determined by pF Z. We have evaluated M(cu = 0, T) from
Eqs. (6) and (8) to leading order in 1/5 and pFa. We find

E
O

I

Cl
E

1.5—

0.5—

p(T) = e g [(5(0) . S(—6i)5(R) S(R + 62))/5 ]B(R).
R,61,62 (10)

Here R labels sites on the cubic lattice, and 6] and 62
are any of the vectors x, Y, z connecting a site to one of
the nearest neighbors. 8 is proportional to the electron
current-current correlation function weighted by a factor
accounting for the ineffectiveness of small q scattering in
degrading the current. In the free electron approximation
in which the fermions have a k dispersion and t' = t" = t,

BR 9 sin pF(R + x) sin pF~R —x~+
32(pF a)' ( p, (R + x [)' ( pF IR —x I)'

(11)
( pFR)'

We have evaluated Eq. (10) using Eq. (11) for B and
calculated the spin correlator in the spherical model [17].
Results are shown in Fig. 1 for pF a = 1 and two magnetic
fields: H = 0 and H = 0.1T,. Results for pFa = 0.75 are
very similar. Note that the results are consistent with the
general arguments [15]:In the spherical model n = —1 so
dp/dT has a derivative discontinuity at T„and below T,
an additional term, proportional to M, is operative. Note,
however, that in the present model the resistivity increases
below T, or in a field. The increase should be compared
to the very sharp drop in p found experimentally (see,
e.g. , the inset to Fig. 1). It occurs because for T ( T, or
H 4 0 there is a nonzero magnetization M which leads to
two effects: the total amplitude of the spin fluctuations is
decreased, and one must add terms in which two of the
spins in Eq. (11) are replaced by factors of M, leading
to additional scattering. For sufficiently large M the
decrease in fluctuation amplitude is the dominant effect.
Our calculation shows, however, that near T, the additional
scattering terms are dominant and lead to an increase in
the resistivity. We think it unlikely that this increase is
an artifact of the spherical model because the peak is so
large and so far below T, that critical fluctuations should
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FIG. 1. Resistivity calculated from the double-exchange
model as described in the text. The solid line is the resistivity
in zero field; the dashed line is the resistivity in a field of
0.15T, . The inset displays data from Tokura et al.

not suppress it. The issue could be tested by calculating
the four spin correlator via Monte Carlo simulation.

It is interesting to compare our results to the explicit cal-
culations of Langer and Fisher [15] who used our Eq. (I)
but assumed JH « t and obtained a formula similar to
Eqs. (10) and (11), except that instead of the four spin
correlator they obtained simply (5(0) 5(R)) because for
JH « t local fIuctuations of 5; scatter the electrons while
for JH )& t local fluctuations of 5; . 5~ scatter the elec-
trons. This difference implies that in the Langer-Fisher
model the only effect of a nonzero M is to decrease the to-
tal amplitude of the spin fluctuations, leading to a decrease
in p below T, . Also, the peak at T ) T, found for small
kF by Langer and Fisher is much weaker in the present
model. The peak occurs because the function B has range
pF ', and for pF$ ( 1 the divergence of the spin correla-
tor in Eq. (11) leads to a peak in p. The two spin cor-
relator in the Langer-Fisher expression for p diverges as

", while the four spin correlator relevant to the double-
exchange case has the weaker divergence g' ". In the
calculations we have performed for 0.5 ~ kF a ~ 1 the di-
vergence is not visible.

The resistivity implied by Eq. (6) has been previously
calculated by Kubo and Ohata [3], Searle and Wang [2],
and Furukawa [4]. Searle and Wang and Furukawa used
mean-field approximations in which all spin correlations
are neglected, i.e. , (5; S,) —(5;)(5,) = 0. It is evident
from the previous discussion that these correlations are
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essential. Furukawa used an "infinite dimensional" ap-
proximation in which he found that for T ) T, the core
spins fluctuated very rapidly (i.e., on the scale set by t) and
led to an enormous imaginary part (=JH) to the electron
self-energy. It is difficult to reconcile these results with
those presented here. In our work JH drops out of the prob-
lem, and the 5; are seen to be well described near T, by a
classical Heisenberg model which entails fluctuation rates
of order T or less. Kubo and Ohata obtained via a different
method an expression similar to our Eq. (10), but evalua-
ted the spin correlation function using an approximation
which neglected the fluctuations in (S; Sl) which are re-
sponsible for the up-turn we find in p near T, .

Some representative experimental data from Ref. [18]
are shown in the inset to Fig. 1. Similar experimental re-
sults have been obtained by many authors [1,2, 19,20]. Al-
though the qualitative temperature dependence calculated
for T ) T, is consistent with the data, several important
discrepancies are evident: The calculated resistivity has
the wrong magnitude (by several orders of magnitude), a
too slow doping dependence, and an incorrect behavior
for T ( T, or in a field. The discrepancies may be traced
to the fact, evident already in Eqs. (6) and (10), that in the
double-exchange model the magnetic fluctuations do not
significantly reduce the electron bandwidth, so a Fermi
liquid picture of weakly scattered basically bandlike elec-
trons follows.

The discrepancies we have listed suggest that some
other mechanism, not present in the double-exchange
model, must act to substantially reduce the electron
kinetic energy K at T = T, . We suggest that this mecha-
nism is a polaron effect due to a very strong electron-
phonon coupling stemming from a Jahn-Teller splitting
of the Mn3+ ion. Other authors, most notably Kusters
et al. [19] have argued in favor of a magnetic polaron
picture. Our calculation shows that the standard double-
exchange Hamiltonian does not contain magnetic polaron
effects because the effective carrier-spin interaction is
too weak. On the other hand, the Jahn-Teller coupling
is very strong. It causes the cubic-tetragonal transition
observed at T* = 800 K in LaMn03 [6], and, in fact,
T' is a dramatic underestimate of the basic Jahn-Teller
energy. Using the standard Jahn-Teller Hamiltonian and
the measured [21] oxygen displacements one finds that
this energy is —0.5 eV, much greater than the measured
electron kinetic energy at x = 0.175. It therefore seems
likely that the Jahn-Teller energy remains important even
in the metallic regime 0.15 ( x ( 0.45 and that the
physics involves a crossover between a high T, polaron
dominated, magnetically disordered regime and a low T
metallic magnetically ordered regime. Understanding this
crossover requires a theory of the interplay of polaron and
metallic physics which is beyond the scope of this paper.
However, it is clear that if polaron physics reduces the
mean free path to less than a lattice constant, the argument
previously given that the resistivity is independent of the

carrier mass (i.e., of K) does not apply. Mathematically,
if the electron self-energy is very large, then the hopping
part of the electron Green's function is proportional to
t, not 1/t; the memory function, Eq. (11) scales as t,
not t; and the increase in velocity for T ( T,. or H 4 0
will compete with the extra scattering terms and may
lead to a drop in resistivity for T ( T, , as observed.
Finally, we note that a crucial test of the importance of
polaron physics is the measurement of the rms oxygen
displacements. If the polaron picture is correct, then the
displacements should be large (of order 0.1 A) at T ) T,
and small for T ( T, .
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