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Destruction of Density-Wave States by a Pseudogap in High Magnetic Fields:
Application to (TMTSF) 2C104
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A model is presented for the destruction of density-wave states in quasi-one-dimensional crystals
by high magnetic fields. The model is consistent with previously unexplained properties of the
organic conductors (TMTSF)2C104 and (BEDT-TTF)zMHg(SCN)4 (M = K, Rb, Tl). As the magnetic
field increases quasi-one-dimensional density-wave fluctuations increase, producing a pseudogap in the
electronic density of states near the transition temperature. When the pseudogap becomes larger than
the mean-field transition, temperature formation of a density-wave state is not possible.

PACS numbers: 75.30.Fv, 71.45.Lr, 74.70.Kn, 75.30.Kz

Understanding low-dimensional electronic systems
continues to be one of the major challenges of condensed
matter physics. Organic conductors are particularly inter-
esting systems because they exhibit a subtle competition
between metallic, superconducting, charge-density-wave
(CDW), and spin-density-wave (SDW) phases. This
competition is sensitive to pressure, temperature, mag-
netic field, and chemical substitution [1—3]. This Letter
presents a theory of the destruction of density-wave
phases in quasi-one-dimensional materials in high mag-
netic fields. The model is used to understand previously
unexplained properties of the quasi-one-dimensional
conductor (TMTSF)2C104 and the quasi-two-dimensional
conductors (BEDT-TTF)2MHg(SCN)4 (M = K,Rb, TI).

At ambient pressure and zero magnetic field
(TMTSF)2CIO4 is a superconductor below 1.3 K. A
spectacular cascade of transitions into held-induced
spin-density-wave (FISDW) phases occurs at fields above
4 T. The quantum Hall effect is observed in these phases
[1]. The phase diagram below 15 T can be explained
in terms of the so-called "standard model, " which is a
mean-field treatment of a highly anisotropic Hubbard
model [1,4]. However, there are at least five experimental
observations concerning the behavior of (TMTSF)qC104
in high magnetic fields that cannot be explained by any
existing theory. (a) At about 15 T the field-induced
spin-density-wave transition temperature TsDw reaches
a maximum of about 5 K and then decreases at higher
fields, going to zero at 27 T [5]. The high field phase is
known as the "re-entrant phase. " Its existence contradicts
the standard model in which the transition temperature
saturates at high fields. Specific heat measurements
indicate that there is a well-defined phase transition from
the FISDW phase to the re-entrant phase [6,7]. (b) Below
(above) 2 K the specific heat of the re-entrant phase at
30 T is smaller (larger) than that of the metallic phase at
zero field [6,7]. (c) Along the phase boundary at high
temperatures the ratio of the specific heat jump, AC, to
the normal state electronic specific heat, y T, is larger than
the mean-field value of 1.43. For example, at 15 T this

ratio is about 3.5 [6,7]. On the phase boundary near 27 T
the ratio is less than the BCS value. (d) In the re-entrant
phase the magnetoresistance is approximately activated in
temperature [5]. (e) Thermopower measurements suggest
that there is an electronic energy gap above 30 T and
below 2.6 K [8].

Previously two models have been proposed to explain
the existence of the re-entrant phase [9,10]. Yakovenko
[9] considered how a high field could effectively con-
fine the electronic motion to single stacks of TMTSF
molecules and as a result the FISDW phase would be de-
stroyed by one-dimensional fluctuations. However, this
model does not predict the observed rapid decrease of
TsDw with field [6], and if commonly accepted parame-
ter values are used the theory will only be relevant for
fields of the order of 100 T [11]. The second model [10]
involves changes in the band structure produced by the
ordering of the C104 ions at 24 K. This model predicts
that there should be spikes in the transition temperature,
periodic in the inverse field, at high fields. Although there
is some evidence for such spikes in acoustic experiments
[12], there is no evidence for such spikes in specific heat
[6,7], resistivity [5], and thermopower [8] measurements.
This model also does not predict the observed rapid de-
crease of TsDw with field [6,7].

This Letter presents a model for behavior near the
FISDW re-entrant phase boundary that is consistent with
the five observations listed above. Before describing the
details a brief description is given of the basic physics.
A SDW forms when the opening of an energy gap at the
Fermi surface, due to the SDW, lowers the total electronic
energy by more than the increase in Coulomb energy due
to the SDW. The size of the energy gap is proportional
to the amplitude of the SDW. However, the fluctuations
in the SDW order parameter affect the electronic states.
Similar effects have been seen in CDW systems [13—15].
Such effects are ignored in the standard model. Near the
transition temperature the fluctuations increase and there
are long range SDW correlations producing a pseudogap
in the density of states. Furthermore, the pseudogap
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FIG. 1. Phase diagram for a spin-density-wave state in the
presence of a pseudogap P. Both the pseudogap and the
transition temperature are normalized to the mean-field tran-
sition temperature, TMF. Along the dotted lines the transition
is first order. There is a coexistence of phases between the
dotted lines. Above the transition temperature as the field in-
creases there is a smooth crossover from a normal metal to
a nonmetal with a pseudogap. This phase diagram is con-
sistent with that of (TMTSF)2C104 at fields above 15 T and
of (BEDT-TTF)2MHg(SCN)4 (M = K,Rb,TI). Inset: Reduction
of the SDW correlation length transverse to the chains, $&, by
a magnetic field parallel to the least conducting direction 16.
Equation (3) then implies that P increases with field. cu, is the
cyclotron frequency [see Eq. (4)].

reduces the transition temperature, and for a sufficiently
large pseudogap formation of a SDW is not possible
(Fig. 1). The reason for this is simple. In the presence
of a large pseudogap, opening an energy gap due to a
SDW will not lower the total energy sufficiently to make
formation of a SDW energetically favorable. The size
of the pseudogap is determined by the magnitude of the
SDW fIuctuations which are in turn affected by the size of
the SDW correlations transverse to the chains. Bjelis and
Maki [16]have shown that the transverse correlation length
is a decreasing function of magnetic field. This provides
a mechanism for the FISDW re-entrant phase transition
seen in (TMTSF)2C104. as the field increases the transverse
correlation length decreases and the pseudogap increases
above a critical value. The presence of a pseudogap is
consistent with the observations (b), (d), and (e).

It is generally believed that the physics of the SDW
phases found in the (TMTSF)2X salts can be described by
a Hubbard model with highly anisotropic dispersion [1].
The hopping integrals t„ tb, and t, associated with the
three crystal axes are estimated to have values of about
250, 25, and 1 meV, respectively. The Fermi surface

consists of two slightly warped planes. The sensitivity
of the imperfect nesting of this open Fermi surface to
pressure, magnetic field, and the anion X, is responsible
for the rich phase diagram. A mean-field treatment of
the anisotropic Hubbard model can explain the existence
of the FISDW phases [1,4]. At zero field the imperfect
nesting prevents formation of a SDW. A magnetic field
improves the nesting because the electron motion becomes
more one dimensional [4,17], resulting in SDW formation
and a maximum transition temperature of about 5 K at
15 T. Since only behavior above 15 T is considered
here, for simplicity, perfect nesting is assumed and a one-
dimensional model of the electronic states is considered.
Consequently, the effect of the orbital electron motion
on the density of states and the transition temperature is
neglected.

At the mean-field level the electrons move in a potential
with wave vector 2k&, A(x), that is proportional to the
SDW amplitude. The upper and lower components of
a spinor 'Il'(x) describe left-moving, up-spin and right-
moving, down-spin electrons, respectively, with Fermi
velocity vF. The Hamiltonian for these electrons is [1]

1
dx Wt ivFo3—+ —-[A(x)o-+ + H.c.] qj',

Bx

where o-3 and o- =—o i + io-2 are Pauli matrices. It is
assumed that the SDW is incommensurate with the lattice
and so A(x) is complex. The other electrons are described
by a similar Hamiltonian.

In the standard mean-field treatment the order parameter
A(x) is replaced by its expectation value. In reality A(x)
is a dynamical field that fIuctuates due to quantum and
thermal effects. These fluctuations are key to the model
presented here. Such spin excitations have been detected
in antiferromagnetic resonance experiments [18] and have
been used to explain the temperature dependence of the
SDW amplitude [19]. The characteristic energy scale of
these excitations is about 1 K, and they soften as the
transition temperature is approached. Consequently, these
excitations are treated classically here. At the Gaussian
level the SDW correlation function above the transition
temperature is [20]

(A(x)A(x')*) = P'exp[ —~x —x'~/~g. (T)], (2)

where $, (T) is the correlation length along the chains and

P is the rms fiuctuation in the order parameter. For a
strictly one-dimensional system P2 ~ Tg, (T) ~ ~ close
to a phase transition [20]. (This divergence is related to
the fact that in one dimension fIuctuations prevent finite
temperature phase transitions. ) A more realistic model
takes into account the coupling between chains and with

qo a wave-vector cutoff gives

6.(T)'
6(T') F, (T')

'
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which is finite as g;(T) ~ ~. Here P will be treated as a
parameter that is a measure of the SDW fluctuations. The
important point is that as the transverse correlation length

$b decreases P increases
Bjelis and Maki [16] considered the effect of a large

magnetic field parallel to the c direction (the least con-
ducting direction) on the CDW and SDW correlation
length in the a and b directions. They showed that, while

g, was not significantly affected, gb is a decreasing func-
tion of magnetic field (inset of Fig. 1). This is because as
the field increases the electron motion becomes more one
dimensional [4,17]. If co, is the cyclotron frequency and

TMF is the mean-field transition temperature, then the size
of the reduction is determined by the ratio

ebvFB
T

B TMF

Bp T
(4)

For (TMTSF)2C104 (b = 7.7 A, vF = 2 X 10' m/sec,
and TMF = 5 K) Bo 3 T [21].

This Letter uses the following model for the fluctua-
tions in A(x). It is replaced in (1) with a static random po-
tential with zero mean, (A(x)) = 0, and correlations given
by (2). Treating A(x) as a static field is a reasonable ap-
proximation if the fluctuations can be treated classically.
Similar arguments have been used to successfully model
the effect of lattice fluctuations on the electronic proper-
ties of CDW compounds [13].

Sadovskii [22] calculated the one-electron Green's
function for the one-dimensional model (1) and (2)
exactly. A perturbative treatment of this problem was
given earlier [23]. Sadovskii found that the Green's
function reduced to a simple analytic form in the limit
of large correlation lengths (g, » vF/P) [24]. Since we
are interested in behavior near TsDw, we will also take
this limit. Then it is also possible to evaluate exactly
higher-order Green's functions such as those needed to
find the transition temperature. The density of states,
shown in the inset of Fig. 2, is zero at the Fermi energy
and suppressed on an energy scale of order P; i.e., there
is a pseudogap. As $, P/vF decreases the pseudogap
gradually fills in [22]. In some CDW systems, at zero
field, optical and susceptibility measurements near the
transition temperature are consistent with a pseudogap due
to fiuctuations [15].

Tsnw/TMF is a universal function of P/TMF (Fig. 1).
(Identical results are obtained for CDW's if Zeeman
splitting is neglected. ) As the fiuctuations increase Tsow
decreases. The most important point is as follows: for
P ) TMF formation of a SDW is not possible

This model is consistent with the five properties of
(TMTSF)2C104 listed above. (a) It is postulated that the
FISDW re-entrant transition is due to destruction of the
FISDW phase by a pseudogap. As the field increases
P increases due to increasing anisotropy, and when P-
TMF the re-entrant transition occurs. (b) Figure 2 shows
the temperature dependence of the electronic specific heat
in the presence of the pseudogap. At low (high) tempera-
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FIG. 2. Dependence of the normal state electronic specific
heat C„and the specific heat jump at the phase boundary AC
on the pseudogap. At low (high) temperatures C„ is smaller
(larger) than its value, yT, in the absence of the pseudogap.
AC is enhanced compared to the mean-field value of 1.43yT.
As the pseudogap P increases AC increases until P —2.6T
where the transition becomes first order. The triangles are
C„data for (TMTSF)2C104 at 30 T [7), with tt = TMF ——

5 K. Inset: Pseudogap in the density of states near the transition
temperature. The energy is relative to the Fermi energy. The
density of states is normalized to the free-electron value po.

tures the specific heat is less (more) than the value in the
absence of the pseudogap. For comparison the observed
temperature dependence at 30 T [7] is also shown. The
data are consistent with the requirement of the model
that P —TMF —5 K. (c) Calculation of the specific heat

jump at the phase boundary requires knowledge of the
temperature dependence of the pseudogap. The results
for a simple model, based on Eq. (3), are shown in Fig. 2.
The specific heat jump is significantly enhanced over the
mean-field value of 1.43yT. This is consistent with the
observed behavior at high temperatures, but inconsistent
with the observed behavior at low temperatures. This
disagreement could be because of the simplistic model
used for the temperature dependence of P and because
the SDW fluctuations can no longer be treated classically.
(d) Because of the pseudogap the magnetoresistance
will be approximately activated in temperature. (e) The
thermopower data are just as consistent with a pseudogap
as an absolute gap.

Several key experiments could test this model. Far-
infrared or NMR measurements could reveal the pseudo-
gap near the phase boundary. As the field increases above
27 T, g, decreases, and the pseudogap will fill in [22].
The anion gap model [10]predicts that the re-entrant phase
only exists due to the anion ordering in (TMTSF)zC104. In
contrast the model presented here predicts the destruction
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of SDW phases in any material at sufficiently high fields.
The difference between the two models could be tested by
searching for the re-entrant phase above 30 T in several
materials. (i) (TMTSF)2C104. at pressures above 5 kbar
the anion ordering is destroyed [3]. (ii) (TMTSF)2PF6 has
no anion ordering. At ambient pressure TsDw —12 K up
to 30 T. Some of these experiments are planned at the
Australian National Pulsed Magnet Laboratory, which pro-
vides access to fields up to 60 T at temperatures down
to 60 mK.

This theory is also applicable to the quasi-two-
dimensional materials (BEDT-TTF)2MHg(SCN)4 (M =
K, Rb, Tl). A coexisting quasi-one-dimensional Fermi
surface is believed to be responsible for the formation of a
density-wave state in these materials at low temperatures.
There is some controversy as to whether this is a CDW or
SDW state [2]. This state is destroyed above the "kink
field, " Hi, [2,25]. (For M = Rb, Hi, = 32 T.) The ob-
served phase diagram is consistent with Fig. 1, including
the observation of first-order hysteretic behavior near H&

at low temperatures [2,25].
In conclusion, a theory has been presented to show how

fluctuations enhanced by a high magnetic field can destroy
density-wave states in quasi-one-dimensional materials.
The model is consistent with previously unexplained prop-
erties of (TMTSF)2C104 and (BEDT-TTF)2MHg(SCN)4
(M = K,Rb, Tl). For calculational and conceptual simplic-
ity, the effects of anion ordering and imperfect nesting of
the Fermi surface are neglected. A complete description
of these materials must include the effects of anion order-
ing, imperfect nesting, and fluctuations. Finally, I hope
this work will stimulate others to use sophisticated many-
body techniques to test whether the model presented here
gives a good description of the effects of spin-density-
wave fluctuations on the electronic properties of quasi-one-
dimensional systems.
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