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Cold Rydberg Atoms as Realizable Analogs of Chem-Simons Theory
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The angular momentum spectrum of an atomic dipole in constant electric and magnetic fields is
calculated. The arrangement of the fields are such that the motion of the dipole is planar and rotationally
symmetric, with the result that the Rontgen term of the Lagrangian takes on the appearance of a Chern-
Simons interaction. On eliminating the kinetic energy term of the Lagrangian, the angular momentum
spectrum changes from one consisting of integers to one consisting of positive half integers. The
possibility of physically achieving such an elimination is discussed in the context of cold Rydberg
atoms.
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Physical systems confined to a spacetime of less than
four dimensions show a variety of interesting properties.
A well-known example is that of the one-dimensional
hydrogen atom: its excited bound states are twofold de-
generate because of the existence of a pole in the one-
dimensional Coulomb potential [1]. Further and perhaps
somewhat more exotic instances, such as the quantum
Hall effect, high T, superconductivity, and cosmic strings
in planar gravity, have arisen in recent times. In many of
these cases, the role of the intrinsically odd-dimensional
Chem-Simons interaction is evident. This term was orig-
inally constructed out of gauge fields in (1 + 2) dimen-
sions, that is one temporal and two spatial dimensions [2];
the formalism associated with these topologically massive
gauge fields was then adapted and used to provide effec-
tive field theories for other confined systems [3].

Models of confined systems which are analogous to
topologically massive gauge theories have been con-
structed theoretically; these give useful insights into a
class of physics which is unknown in four-dimensional
spacetime. For example, consider a charged particle
moving in constant external magnetic and electric fields.
If the motion is constrained to be planar and rotationally
symmetric, then the vector potential component of the
minimal coupling takes on the form of a Chem-Simons
interaction [4]. A theory analogous to that of "pure
Chem-Simons" is obtained in the limit of vanishing parti-
cle mass; the removal of the kinetic energy term collapses
the Lagrangian to first order and ultimately makes the
particle's angular momentum spectrum consists of half
integers. The subject of the present Letter is to show that
such an analog, but one which is physically realizable,
may occur in the case of a cold Rydberg atom. Here,
by a suitable experimental arrangement, the Rontgen
interaction takes on the appearance of a Chem-Simons
term, and the reduction in order of the Lagrangian is
achieved in part from the overwhelming importance of the
large dipole moment.

A rigorous treatment of the center-of-mass dynamics
for a moving dipole in an electromagnetic field reveals
the presence of an interaction term linear in the dipole's

(2a)

k
d . E(R) = ——R;R, . (2b)

In Eq. (2), the usual summation convention over repeated
indices has been adopted, and the parameters g and k are
constants —the factor of 2 is added for later convenience.
The two-dimensional Levi-Civita matrix e;; has vanishing
diagonal elements, with ei2 = e2& = 1. Equation (2)
implies that the fields are arranged in a crossed formation
with the magnetic field aligned along the g axis and
the electric field acting radially in the x-y plane. The
Lagrangian of the restricted system is therefore

M g k
L = —R, R; + —e;;tR;R;t ——R;R; . (3)

Confining the dipole to planar, rotationally symmetric mo-
tion defined by (2) causes the Rontgen interaction to take
on a Chem-Simons appearance e;; R;R;~. Equation (3) is

velocity [5]. The Rontgen interaction, which is consis-
tent with a canonical identification of the center-of-mass
Hamiltonian, is necessary in order to conserve momen-
tum and to ensure gauge invariance. Its origin lies in the
classical Rontgen current which is generated by the gross
motion of any aggregate of charges. The Rontgen interac-
tion makes a small but potentially interesting contribution
to laser cooling effects [6]; it yields the correct veloc-
ity dependence of atomic optical responses [7], and it is
also responsible for inducing a quantum phase in a dipole
moving in a constant magnetic field [8].

In three-dimensional space, the Lagrangian
M ~

L = —R —R ~ dxB(R) + d ~ E(R) (1)
2

represents a dipole of moment d and mass M, whose
position R in the laboratory frame moves in elec-
tric K and magnetic 8 fields. The Roentgen energy
R.d x B(R) ensures that the canonical momentum
P = MR —dxB(R) differs from its purely mechanical
component MR. Suppose that the motion of the dipole is
restricted to two dimensions E

= 1, 2 by the application
of constant electric and magnetic fields in an appropriate
experimental arrangement, such that

g oR.d x B(R) = —e,pR;R;i,
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of the same form as the Lagrangian for a charged parti-
cle executing planar, rotationally symmetric motion in a
constant magnetic field and quadratic scalar potential, and
is also analogous to the Lagrangian density for (1 + 2)-
dimensional, topologically massive electrodynamics in the
Weyl gauge [4].

The orbital angular momentum spectrum of the system
described by (3) consists of positive and negative integers,
but, by removing the kinetic energy term, the spectrum
is made to assume one of only positive half integers.
Choosing the dipole to be that of a cold Rydberg atom
may provide the physical means of constructing such a
first-order Lagrangian. The parameter g is proportional
to the magnitude of the dipole moment and dependent on
the magnetic field. It therefore assumes a dominant role
in the case of a Rydberg atom in a large magnetic field.
Further, by constructing the effect of the last term of (3)
from an appropriate optical trapping field, the possibility
arises of slowing the speed of the atom to the extent that
the kinetic energy term may become insignificant [9].

The theory will be described first from the full La-
grangian, where the kinetic energy term is retained and
where Lagrange's equation gives MR; = g e;; R; —kR;
as the classical equation of motion. The path to quan-
tization leads straightforwardly from (3) and its conjugate
momenta

variables to

Mn 1

Ri 2MB P, , (10a)

—i/2

p +- MA cu
R, , (10b)

2

where

co~ g
2M

the Hamiltonian may be written in the form

2 2 2
CcPHP++P++A2+A

2 2 2" 2'- (12)

(13)

in the holomorphic representation
—i/2h

(a + a-), (14a)
—i/2

heal ~
p~

2
a —a (14b)

of two uncoupled harmonic oscillators of unit mass
and of frequencies co . The dimensions of p and
r" are [M)'i [L][T] ' and [M]' 2[1.], respectively. The
Hamiltonian (12) becomes

H =hfdf+ a+a+ + 2 +hM — a a + 2
1

~ gP; = MR; ——e;;iRi,

together with the fundamental Poisson brackets

(4) The boson operators a, a ensure that

[i,P ]=ih a, a =ihB (15)

(R;, RI) =(P;,P;) =0,
(5a)

(5b)

where n, o.' = +, —.They annihilate and create ~ num-
ber states ~n+, n' ) = ~n+) ~n' ) of the dipole, appropri-
ate to the usual quantum harmonic oscillator scheme

to the Hamiltonian operator
A A 2PP; g - - MA

H = + e~~iP~R~i + RI,RI,
2M 2M 2

and associated commutators

(6)

a+ ~n+, n' ) = Qn+ ~n+ —1, n' ),
a +~n +,

n' ) = Qn+ + l~n+ + l, n' ),
a

~

+nn' ) = n' (n+n' —1),

attn+, n') = n' + 1)n n+' + 1),

(16a)

(16b)

(16c)

(16d)

[R;, R, ] =0,
[R, , P, ] = iha, ,

(7a)

(7b)

reveals the dispersive "mass" term gi2M, which comes
from the presence of the Chem-Simons term in the
Lagrangian. In deriving (7), the equivalence

Quantum mechanical operators have been denoted by
carets. The frequency

- &/2

g k+ —.
4M2 M

J~n~, n ) = h(n —n+)~n+, n )

for the canonical angular momentum

(17)

and normalized according to (m', m+ ~n+, n' ) = 6„
Since g 4 0, it is evident from Eq. (11) that cu

~+, therefore, from the Hamiltonian (13), the energy
eigenvalues are nondegenerate providing cu is not a
multiple of cu-. If, say, co+ = geo, where g is an
integer greater than 2, then g = 2M(g —I)/(g + 1).
The possibility of a degeneracy occurring by cu itself
vanishing is prevented by a nonzero k [10].

The advantage of the representation (14) lies in the ease
in which it allows the determination to be made of the
eigenvalue equation

[x,y] —= ih(x, y) (9) A AJ = e;;~R;P;~

has been used to obtain the commutator between any two
quantum mechanical operators x, y. By changing the

of the dipole. In (1 + 2) dimensions, angular momentum,
like any quantity defined as an exterior product, is a
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scalar [11]. Equation (17) follows straightforwardly from
Eqs. (10), (14)—(16), and

J = —(M+ p+ + Qi~ i"+) — (cd p + co —i )2

h

2 2
= —(a at + a~ a ) ——(a+a~ + a~a+). (19)

= J —(g/2)R, R;, (22)

except where it vanishes in the limit M .- 0. The
positive half-integer angular momentum spectrum (21) is
therefore a consequence of the presence of the Chern-
Simons interaction (g/2)e;; R;R;, which remains in the
Lagrangian after the removal of the kinetic energy term.

Of course, the absence of the kinetic energy term in (3)
creates a first-order Lagrangian with primary constraints

@;=P; + —e;;R; =0, (23)

which are indicative of the momenta not being indepen-
dent functions. Following the usual procedure [12], the
symbol = means that all Poisson brackets of interest must
be determined before any use is made of the constraints.
Remembering that e;; = —e;;, the Poisson bracket

(4.4«) = g~ (24)

between the constraints is determined. Since this is
nonzero, there are therefore no secondary constraints. The
equivalence (9) must be replaced by

[x, y] = iIi(x, y j —ih(x, @;)C;;(@;,y), (25)
where the matrix

Therefore, the angular momentum eigenvalues of the
dipole, whose Lagrangian is given by (3), assume the
values of any integer multiple of h. They are also
infinitely degenerate. However, this degeneracy is lifted
in the limit of vanishing kinetic energy, where the
eigenvalues are only positive half-integer multiples of
h. This can be seen by expanding (8) by the binomial
theorem and using the result with (11). The removal of
the kinetic energy term corresponds to taking the limitM: 0, where the frequency co+ diverges and co tends
to k/g. Therefore r+ vanishes, to give

lim J = —(a ai + ata ) (20)M~0 2
and

1
lim J(n ) =Ii n + —

~n ) (21)
M~O 2

as the limiting angular momentum and eigenvalue equa-
tions. The positive half-integer spectrum comes about
because the absence of the + oscillator ensures that the
zero-point (vacuum) angular momentum Ii/2 contribution
of the —oscillator remains uncanceled.

From the form of the Hamiltonian, it is evident that the
canonical angular momentum (18) is a constant of motion.
This is not the case for the purely mechanical angular
momentum operator

J „h= M(i /ii) e;; R; [H, R; ]

C;; = —(I/R)E;; = (I/g)e;; (26)

is defined as the inverse of (24). From Eqs. (25), (26),
and the Poisson brackets

(R, , @,j= a... ,

(P, 4 ) = (g/2)~

(27a)

(27b)

together with the identity e;, e, ; = —6,;, the commutators

[R;,R; ] = —i(Ii/g)e, ;,
[R;, P; ] = i(Ii/2)6;;

(28a)

(28b)

(29a)

in terms of boson creation at and annihilation a operators
of number states ~n), are consistent with (28) and angular
momentum eigenvalues of Ii(n + [1/2]).

To induce transitions between the orbital angular mo-
mentum eigenlevels, the dipole is now considered to in-
teract with a suitable radiation mode. One could envisage
that such a mode might perhaps be of a Laguerre-Gaussian
form, since a Laguerre-Gaussian beam carries orbital an-
gular momentum along its direction of propagation [14].
However, for the present purpose of determining transi-
tions dynamics, the radiation mode need not be specified
further than its boson annihilation b and creation b oper-
ators which form the commutator [b, bt] = 1. Therefore,

H' = g (Fiat a a + A a bi + A a~b) + iicubtb

(30)
will be taken as the total Hamiltonian, in the rotating wave
approximation, of the planar-confined dipole coupled to
the single-mode radiation of frequency cu. The zero-point
energies in (13) do not affect dynamical calculations and
are ignored. The interaction strengths A are taken to

are found. These commutators differ from those of (7),
but are obtained in the limit M: 0 from Eqs. (4),
(10), and (15) with n = a' = —. The departure of the
commutators (28) from their usual canonical values is a
feature in the quantization of any system governed by
a Lagrangian that is linear in velocity. Although this
is a standard result [13], it is not well known and for
this reason it has been thought necessary to sketch the
derivation.

In the absence of the kinetic energy term from the La-
grangian (3), the angular momentum (g/2)R, R; assumes
the same form as the Hamiltonian (k/2)R;R;, and from
(28a) it can be seen to generate rotations in the usual
manner: (i/6) [(g/2)R;R;, R, ] = —e, ; R; In the. case of
the full Lagrangian, such rotations are generated from
(18) in conjunction with (7). The equations of motion
dP;/dt = —kR;, obtained with the aid of (28b), are con-
sistent with the absence of the kinetic energy term from
(3). Finally, the representations

—1/2-

Ri = (2/g)Pq = — (a + a ),
2g

~
—
g

—1/2

P
~

= —(g/2)R~ = —— (a —a ), (29b)
2 2
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be complex. Assuming that the planar-confined dipole
is prepared in its energy ground state ~0, 0), the temporal
variations of the component operators of (30), determined
in the usual manner [15],give

(J(t)) = t[l~- I'~(~- —~)
—l~+ I'~(~+ —~)](b'(o)b(o)) (31)

momentum quantum number [16]. This enforces the
suggestion made above that a Laguerre-Gaussian beam
would supply a suitable probe for the angular momentum
resonances indicated by Eq. (31).

as the expectation value of the angular momentum (19) at
the limit of large time t. Hence, the analysis suggests
that two distinct resonances +, — occur at cu = ~
As M is reduced, rejecting a diminution in the kinetic
energy term, the —resonance occurs at ever greater values
of cu, until only the + resonance remains achievable at
to = kjg.

The change in the nature of the orbital angular mo-
mentum spectrum of a dipole executing planar, rotation-
ally symmetric motion, from one consisting of integers
to one consisting of positive half integers, is a result of
the dipole's Lagrangian (3) becoming first order in ve-
locity. This state of affairs comes about through the re-
moval of the kinetic energy term of the Lagrangian, the
dipole obtaining in the process a nonvanishing zero-point
angular momentum. By choosing the dipole to be that of
a cold Rydberg atom in a strong magnetic Geld, the re-
moval of the kinetic energy term, or at least a noticeable
reduction in its influence, could be achieved physically.
The degree to which this is successful would be indicated
by the location and nature of the possible angular mo-
mentum resonances. Much of the role of Chem-Simons
theory in predicting interesting physics in the settings of
odd-dimensional spacetime, such as those found in planar
condensed-matter systems and cosmic strings, is conjec-
ture. The present paper has described a simple (1 + 2)-
dimensional system which for the first time allows in prin-
ciple an experimental verification of the Chem-Simons
feature of fractional angular momentum. The use of the
recently introduced Rontgen energy term allows the La-
grangian of a planar-confined Rydberg atom to exhibit a
Chem-Simons coupling.

Since submitting this paper, work has appeared which
shows that an unconfined two-level atom moving in a
Laguerre-Gaussian beam is subject to a radiation-induced
torque, which is proportional to the mode's orbital angular
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