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Tensor Magnetothermal Resistance in YBa2Cu307, via Andreev Scattering of Quasiparticles
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A magnetic field in the a bplane-of an untwinned single crystal of YBa2Cu&07, (T, = 92 K) is
found to induce field-dependent off-diagonal elements in the thermal conductivity tensor at 10 K. The
principal axes of the field-dependent part of the tensor lie along equivalent (110) directions; a principal
component is maximized when the field is along the corresponding principal axis. A model that
considers Andreev reflection of thermally excited quasiparticles by vortex screening currents gives
semiquantitative agreement with experiment only if the gap function has nodes in the vicinity of (110).

PACS numbers: 74.72.Bk, 74.25.Fy, 74.60.Ec

Although the pairing symmetry of high temperature
superconductors remains controversial, there is growing
evidence that the gap has nodal structure in the vicinity
of ~kF, (

= ~kFb(, which we will term 45 positions. Pho-
toemission studies on Bi2Sr2CaCu208 suggest a single
node [1], or perhaps a double node [2], at that point. In
YBa2Cuq07, (YBCO), Josephson tunneling studies [3]
are consistent with a ~ phase change between a and b
directions, arguing strongly for a single node. The lin-
ear temperature dependence of the penetration depth at
low temperatures [4] and the field dependence of the heat
capacity [5] also imply line nodes in the gap, while mi-
crowave studies [6] indicate that quasiparticles (qp) have
much longer mean-free paths in the superconducting state
than in the normal state. Taken together, these data sug-
gest that a significant density of qp's exists at low tem-
peratures, and that these are localized near the 45 nodal
positions; that is, their crystal momenta are nearly parallel
to the (110) axes of the crystal.

In this Letter, we report new thermal conductivity
results on untwinned YBCO, exploiting the small phonon
thermal conductivity of the cuprates [7] that makes it
possible to observe the electronic contribution below
T, . Even at low temperatures (T/T, = 0.1) and in
relatively weak fields (H/H, '2 ——0.003) applied in the
CuO planes, the thermal conductivity is field dependent.
More importantly, magnetic fields in the plane induce off-
diagonal components of the thermal conductivity tensor
~, the elements of which depend on the magnitude of
the field and its angle relative to the crystal axes. With
the temperature gradient (V'T), applied along [100] (the
a axis, normal to the chain direction) and the field at
an angle @ relative to it, a temperature difference ETY
is developed along [010], reminiscent of the Hall effect.
We ascribe this effect to the scattering of quasiparticles
by the screening currents surrounding vortex lines in a
manner similar to the scattering of rotons from vortices in
superfluid4He [8].
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FIG. 1. Nominal thermal conductivities sc| (circles) and Kp

(squares) determined from 6T, and ET2, respectively, vs the
field angle @. The lengths used are the vertical separations
of the junctions sketched in the inset. The measurements are
performed at T = 10 K and p, oH = 1.5 T.

The sample used in this study is the same un-
twinned single crystal of YBCO, of dimensions
0.5 X 0.5 X 0.02 mm3, studied previously [9]. Here,
three 12 p, m, type E, thermocouple junctions were
attached to the sample in the configuration sketched in
Fig. 1, to measure the temperature differences AT& and
AT2 along [110] and [110] directions, respectively. The
sample was anchored at one end to a Cu heat sink, and
a 1 kO, microchip resistor was attached to the other.
With heater power of =170 p,W, AT& + ET2 is less than
0.5 K. The sample was mounted on a closed-cycle refrig-
erator and placed between the pole faces of a conventional
electromagnet. Care was taken to align the c axis of the
sample with the rotation axis of the magnet. At each
temperature-field-angle setting, 5—20 current-on, current-
off sequences were repeated and averaged. Figure 1

shows the nominal thermal conductivities determined
from kT& (circles) and AT2 (squares) as functions of @.
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Nominal means that junction separations S~ = 0.17 mm
and 82 = 0.23 mm along the a axis, as measured from a
micrograph, are used. The middle junction is separated
by 0.29 mm from the line connecting the outer two, but
there is considerable uncertainty in this value due to the
finite length of the thermocouple junctions.

While AT& and ET2 exhibit relatively large changes
with field angle, their sum depends only weakly on

This behavior is consistent with a model in which
the field-independent part of K has the orthorhombic
anisotropy of the crystal [9], while the (small) field-
dependent part is also orthorhombic, but with principal
axes rotated by 45 (independently of field). To determine
the principal components of K, the anisotropy of which is
periodic in P with period vr, we must take into account
the effective placement of the thermocouples, the sample
shape, and the nonuniformity of the heat fIow. We do
so by computer simulating a square resistor network
of 95 & 81 horizontal and vertical nodes, respectively,
approximating the sample shape. Each node is at the
junction of a line of 1 0 and of r && 1 A resistors,
running ~45 with respect to the vertical axis, as sketched
in Fig. 2. Voltage is applied across two horizontal lines
of nodes at opposite ends of the array and voltages
are measured at three points that match the placement
of the thermocouples on the sample. Because of the
discreteness of the array, 4V] and AV2 are determined
as r is varied over the range 0.8 ~ r ~ 1.2 for several
contact placements. The functional relation AVi/ EV2 =
f(r) is then determined by interpolation so that f(1)
equals the temperature ratio measured in zero field.
The principal components Kpi and Kpp of the thermal
conductivity tensor are then in the ratio Ir„&/K„2 =
f '(ATi/AT2). For each value of r, we determine the
ratio gi/g„i, where gi is conductance determined from

EV~ and the separation of the contacts in the direction of
primary current fIow and g~[ is the conductance along the
principal axis joining the EV~ contacts. This procedure
permits us to calculate

K p] from K
~

in Fig. 1 and Kp2 from
the ratio.

The field dependence of the principal values is shown
in Fig. 2 with the field at 45, parallel to the principal
axis associated with Kp[ That component is essentially
independent of field, while KP2 decreases significantly.
With the vortex cores situated between conducting planes
in this geometry, the arguments used previously [10]
to separate phonon and qp contributions by the thermal
conductivity can be applied. We fit the field dependence
of K„p by the simple form [11]

Kp2(H, 10 K) = Ir(~) + K&2 (0)/(1 + H/Hp), (1)

obtaining Hp = 12.6 kOe, K„2(0) = 0.99 W/m K, and
Ir(~) = 3.68 W/m K; the last is attributed to the phonon
term. In Fig. 3, we plot the two principal components

K& i 2(1.5 T, 10 K) vs the angle cp. The phonon contri-
bution Ir(~) has been subtracted. As was evident from
Fig. 1, the thermal conductivity is largest when the
magnetic field is parallel to the principal axis in question,
and smallest when perpendicular to it. The near equality
of the crossing values is circumstantial evidence that
nodes involve lines close to 45 .

We have considered, and eliminated, experimental arti-
facts that might lead to these effects. Nonsuperconduct-
ing samples of comparable size and thermal conductivity
were studied under the same experimental conditions, and
exhibited no field dependence. Misalignment of the plane
of rotation of the applied field and the sample plane would
produce a c-axis component of the field, giving AT[ and

AT2 a twofold angular dependence, but with a constant ra-
tio. Further, vortex lines tend to lock parallel to the CuO
planes until the c-axis component of the field in the tilted
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FIG. 2. Field dependence of the principal components of the
thermal conductivity with P = 45'. The solid line is a fit by
Eq. (1). The inset is a sketch of the resistor network, showing
the voltage contacts.

Field angle $ [degrees from (100)]

FIG. 3. Full angular dependence of the principal components
at 10 K and 1.5 T.
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configuration exceeds H, «, requiring a misalignment of
at least 0.5 before any c-axis component can appear [12].

To determine the effect on ~ of Andreev reAection of
quasiparticles by the in-plane components of the vortex
currents, we assume that the superfluid velocity v, (r)
associated with these currents varies sufficiently slowly
in space that for most of the qp's which carry the heat
current an "adiabatic" approximation is legitimate, in
which we define the "local" qp energy as viewed from
the laboratory frame by

Ei,b(p, r) = E~ „,(,1
+ v, (r) p, (2)

where E~ = (p /2m* —p, ) + 6(p), and we have ne-
glected terms which are of order v, /vF relative to those
kept. In this approximation the quantity E(p, r) is con-
served along the (quasiclassical) qp trajectory, and if as
a result at any point the "superAuid-frame qp energy"
E~ „,&„)

= [E(p)], then at that point Andreev reflec-
tion takes place: as viewed from the frame of reference
moving with the superAuid, the quasiparticle turns into a
quasihole, reversing its velocity and hence its contribution
to the thermal current [13]. This mechanism of electronic
thermal resistance may be viewed as acting in series with
other mechanisms such as impurity scattering. It is clear
from Eq. (2) that if a quasiparticle starts from point r, the
condition for it to suffer Andreev reflection at point r' is

E,— .,(.) —I~(p) I
=

I v, (r') —v, (r)] p (3)

To obtain an approximate description of the statistics of
the quantity v, (r), we use a model in which the vortex
cores are randomly distributed (after rescaling the axes
so as to make the superfluid density isotropic) with mean
spacing a„. Then, for p =— ir —r'i in the range $0 «
p « AL (which for our fields includes the regime p-
a ), a straightforward argument shows that the quantity
v, (r) —v, (r') =— Av, (p) is Gaussian distributed with zero
mean and variance given by

av,'(p) =, , In(ap/go), (4)
2m a

where A is a numerical constant of order unity. Evidently,
this behavior is not Markoffian and does not, strictly
speaking, allow us to define a "mean-free path" against
Andreev reAection.

However, it is clear that we should be able to get
at least a qualitative description of the effect by taking

p —a, in Eq. (4) and hence defining an effective rate of
Andreev scattering by vortex currents by

1

r, (H, p) +v0

—m'a'„[Ep —
i 5 (p) i

]'
pF 6' ln(a /$0) sin' 1/j(p)

with r„o —a /vF, and where P(p) is the angle between
the direction p and the magnetic field. Here we replace
p —mv, (r) in the argument of E~ by p on the grounds
that we will be averaging both over p and over the
superf1uid velocity at the "refiecting" point. As it is clear
that (the rescaled) a„2 is proportional to the field H, we
evaluate Eq. (5) using

0P

2ckBT2g2

p2
d p sech

g~ gp p 2 p

I H, p kgT

(7)

where c is the c-axis lattice parameter and the relax-
ation rate is given by I (H, p) = 1/ro(p) + 1/r (H, p).
Here, I/ro(p) is the zero-field relaxation rate due to
phonon and defect scattering. We consider a single par-
abolic band with effective mass m*/m, = 2, and set
EF = 1 eV, k~T, /EF = 0.008 (T, = 92 K), and
(20 meV) tanh(2. 2QT, /T —1) [5]; with these parameters,
vF ——4 X 10 cm/s. The gap function A(p) = Dog(p) is
chosen to be of either d-wave form [15],

cos(p, a/h) —cos(p~ a/h)
gd(p) =

1 —cos(pF a/6) (8)

or of extended s-wave form for a cylindrical Fermi surface
[16],

pFh /m a„= ~yb, oH/H;

where 50 is the energy gap and y is a numerical factor
which, were we to apply the standard Ginzburg-Landau
and BCS relations, would be (m*/m) . It should be noted
that Eq. (5), being based on the adiabatic approximation,
will if anything overestimate the probability of Andreev
reAection, particularly for quasiparticles close to the nodes
of the gap.

We calculate the qp contribution to the thermal conduc-
tivity for heat fIow along n = x, y with the thermal gradi-
ent along P using a two dimensional version of the usual
Bardeen-Rickayzen-Tewordt (BRT) [14] expression,

1 + 6([cos(p a/h) + cos(pYa/6) —2Jp(pFa/6)]/[2Jp(pFa/R) —2cos(pFa/~26)])
g-(p) = (9)

where Jo(x) is a Bessel function. For 8 ) 1, there are two
nodes located symmetrically about the 45 positions.

Making the simplifying assumption that the field-
independent relaxation rate 1/ro(p) is independent of p
over the narrow energy range of the BRT integral, we
calculate K„i 2 = 2(K~," + ~"~ ~ 2~q~) from Eq. (7); at

I

H = 0 we obtain K„2(0)/rp = (8.1 X 10" W/mKs) for

a d-wave gap. The qp contribution from Eq. (1) gives
7-0 = 1.2 ps compared with ~o = 5 ps, estimated from
microwave conductivity data on twinned samples [17],
which therefore include a contribution from the chains.
The extended s-wave gap requires 7p = 0.26 ps.

Figure 4 shows ~„1(1.5 T, 10 K) for both d and ex-
tended s gaps, with p, pH,'2 = 500 T, A/$ = 100 [18],
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estimates of the quasiparticle contribution to the thermal
conductivity at low temperatures. With only 7.

O and
p/rp as parameters and either a d-wave or an extended

s-wave gap function, the model provides an explanation
for the induced anisotropy of the thermal conductivity
tensor. The model for the relaxation rate is somewhat
extreme, resulting in peaking of the thermal conductivity
for fields along the nodal lines that is narrower than
observed.
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dation (Grant No. DMR-91-20000) through the Science
and Technology Center for Superconductivity. We are
grateful to N. Goldenfeld for useful discussions and assis-
tance with numerical integration.
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FIG. 4. Calculated ratio of the principal component x„~(H) of
the quasiparticle thermal conductivity to its value at zero field
for d-wave and extended s-wave gap functions. The parameters
are given in the text. For 6 = 1, the s-wave node occurs
exactly at 45', for 6 = 1.3, two nodes appear at 35 and 55,
respectively.

and r„p = rp/3 chosen to produce the observed = 60%
modulation in Kp& With 6 = 1.3 the extended s nodes
are separated by 20, such as was recently reported for
Ba2Sr2CaCuzO, [2]. In the d-wave case, the character-
istic length vF~„p = 1600 A exceeds the vortex spacing
a, = 400 A. That Andreev reliection takes place only if
the sign of Av, p is positive leads to a factor of 1/2
in the relaxation rate; on the other hand, the fact that it
reverses, rather than merely annihilates, the heat current
leads to a compensating factor of 2. These and other
"geometric" factors are all buried in the prefactor r o.
Clearly, it is not possible to distinguish unambiguously
between s- and d-wave gaps from our data. The extended
s-wave gaps produce a more symmetric angular variation,
as is observed. However, the length vFv- 0 required to
produce the amplitude of the oscillations is =160 A, less
than a, making this a less likely possibility.

In summary, we have observed a new Hall-like effect
in which Andreev scattering by the screening currents
in a type-II superconductor with strong gap anisotropy
induces heat How normal to the temperature gradient.
This is to be contrasted with the classical Righi-Leduc
effect in which the field is normal to the plane of the
heat How. We have demonstrated that band structure and

gap parameters appropriate for YBCO give reasonable
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