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Coulomb Gap and Correlated Vortex Pinning in Superconductors
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The positions of columnar pins and magnetic Aux lines determined from a decoration experiment on
Bi2Sr2CaCu208 were used to calculate the distribution of pinning energies in the Bose glass phase. A
wide Coulomb gap is found, with effective gap exponent s,ff = 1.2, as a result of interactions between
the vortices. As a consequence, the variable-range hopping transport of flux lines is considerably
reduced with respect to the noninteracting case, the effective Mott exponent being enhanced from

po = 1/3 to p,« = 0.5 for this sample.

PACS numbers: 74.60.Ge, 05.60.+w

The remarkably rich phase diagram of magnetic flux
lines in high-T, superconductors, especially when subject
to point and/or extended disorder, has attracted consider-
able experimental and theoretical interest [1]. Understand-
ing the interaction of vortices with defects is especially
important since flux lines must be pinned to minimize
dissipative losses from flux creep. A promising pinning
strategy involves the creation of linear damage tracks in
materials by heavy-ion irradiation. These columnar de-
fects effectively increase the critical current, and shift
the irreversibility line significantly upwards [2]. Intrinsic
point disorder (oxygen vacancies) is believed to be neg-
ligible under these conditions, especially above the irre-
versibility line of the unirradiated material [3].

A theory of ftux pinning by correlated disorder has been
developed to explain these results, exploiting a formal
mapping of the statistical mechanics of directed lines onto
the quantum mechanics of bosons [3]. In this study, the
intervortex repulsion, whose range is determined by the
London penetration depth A, was only treated using ap-
proximate, order of magnitude estimates. However, if
A ~ ao, where ao = (4/3)'14(go/B)'12 is the average dis-
tance between vortices (@o = hc/2e is the elementary Ilux
quantum), the interactions become strong, and may lead to
important correlation effects.

A central concept here is g(e), the distribution of
pinning energies e with interactions taken into account;
by suitably "tailoring" the width and shape of g(e), the
vortex transport properties may be optimized. Indeed,
the analogy of flux lines at low temperatures pinned
to columnar defects (Bose glass) with localized carriers
in doped semiconductors (Coulomb glass) [4] suggests
that interactions may lead to a soft "Coulomb" gap in
g(e). When A )) ao, the intervortex potential becomes a
logarithmic repulsion, which replaces the 1/r interaction
between electrons or holes in a semiconductor. Because
such a gap will affect significantly the current-voltage
characteristics in a variable-range hopping approach [3],
it is important to estimate its size in the Bose glass
phase and to understand the correlations induced by the
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FIG. 1. Positions of empty columnar defects (open circles),
and pins occupied by flux lines (filled circles), as obtained from
the experiment (f = 0.24, A = 0.45ao).

intervortex repulsion. Recent successes, moreover, in
simultaneously measuring both the columnar defect and
flux line positions [5,6] allow for detailed comparison of
the spatial correlations found in experiment and theory.
Such a comparison is not feasible for semiconductors.

The distribution of pinning energies may be obtained by
using a variant of the Monte Carlo algorithm described by
Shklovskii and Efros [4,7]. Using the experimentally de-
termined columnar defect and Aux line positions shown in
Fig. 1, we can predict the distribution of pinning energies
and the transport characteristics for this specific sample in
the variable-range hopping regime, at temperatures slightly
below the irreversibility line. We find that the ensuing
Coulomb gap is remarkably large, even in the case A = ao,
i.e., when the interactions are relatively short range. Vor-
tex repulsions raise the effective Mott exponent from the
noninteracting result po = 1/3 to a value p, tt = 0.5 for
this specific sample. These results imply that correlation
effects strongly enhance the pinning of Aux lines to colum-
nar defects.
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We consider the following model free energy for N flux
lines, defined by their trajectories r;(z) as they traverse the
sample, with the magnetic field B aligned along the z axis
(perpendicular to the Cu-0 planes) [3],

+ —g V[ „(.)]ci dr;(z) '
1

dz 2"
N~

+ P Vo[r;(z) —R„] .
jc= 1

Here r;, (z) = lr;(z) —r, (z)l, and V(r) = 2epKp(r/A) is
the repulsive interaction potential between the lines;
the modified Bessel function Kp(x) ~ —lnx for x ~ 0,
and ~ x 't2e ' for x ~ ~. Thus the (in-plane) London
penetration depth A defines the interaction range. The
energy scale is set by ep = (@p/47rA), and e& is the
tilt modulus. Finally, the pinning energy is a sum
of No z-independent potential wells VD with average
spacing d centered on the [RI,), whose diameters are
typically cp = 100 A, with a variation of Bck/cp = 15%,
caused by the ion-beam dispersion. This induces some
distribution P of the pinning energies Uk, which may
be determined from the (interpolation) formula Uq =
(ep/2) In[1 + (cq/~2/) ] (g is the coherence length) [3].
For example, for A = 4200 A one has Uo = 0.67eo, and
iv = Q(BU&) = O. lep.

As is explained in detail in Ref. [3], the statistical
mechanics of the model (1) can be formally mapped onto
a two-dimensional zero-temperature quantum mechanical
problem. In this boson analogy, the real temperature
T assumes the role of h in the quantum problem, and
the boson electric field and current density map on the
superconducting current J and the true electric field 8,
respectively (see Table I in Ref. [3]). Thus the roles of
conductivity and resistivity become interchanged.

We are interested in the low-temperature properties
of flux lines pinned to columnar defects, with filling
fraction f = N/ND = (d/ap)2 ( 1, in the Bose glass
phase, where all the vortices are bound to the pinning
centers. For T less than a characteristic temperature
T& = 0.9T, for Bi~Sr2CaCu20s [3], one arrives at the
classical limit of the corresponding boson problem (6 ~
0), and as the vortices are now well separated, the Bose
statistics become irrelevant. Furthermore, in this limit
thermal wandering is suppressed, and the flux lines will
be essentially straight; hence the tilt energy in Eq. (1)
can be neglected. The ground state is then determined

by minimizing a z-independent two-dimensional effective
Hamiltonian

1
N~ No

H = —g n;n, V(r;, ) + g n, t;, (2)
iwj i=1

where i, j = 1, . . . , ND denote the defect sites, randomly
distributed on the x-y plane. n; = 0, 1 is the correspond-
ing site occupation number, and the t; are random-site
energies (originating in the varying pin diameters), whose

distribution may be chosen to be centered at t = 0, with
width w [for simplicity, we assume a flat distribution
P(t;) = I/2w for lt; l w, and P(t;) = 0 otherwise].

The Hamiltonian (2) has the form studied in the
context of localized charge carriers in doped semicon-
ductors (Coulomb glass) [4,7,8]. It is equivalent to
a two-dimensional random-site, random-field Ising anti-
ferromagnet with long-range exchange interactions, and
has eluded successful analytical approaches going be-
yond simplifying mean-field considerations [4], and phe-
nomenological scaling arguments [9]. Therefore one has
to resort to numerical studies using suitable Monte Carlo
algorithms, as described in Refs. [4,7].

A fraction f of a given distribution of No defect
sites is occupied, and the corresponding site energies
e; = BH/Bn; = g, g, n, V(r;, ) + t; are calculated. The
initial configuration is relaxed by moving "particles"
to empty places, until precisely the N lowest energy
levels are filled (e'„= max„=l e; ( e";„=min„=p e;).
The ensuing state is then probed against all possible
single-particle hops from filled to empty sites; i.e., if
any associated energy change 5;, = e, —e; —V(r;, ) is
negative, the move from site i to j is performed, and thus
the total energy decreased. Afterwards the entire process
may have to be iterated. Finally, the chemical potential is
determined (approximately) by p, = (e;„+ e'„)/2 [10].

By repeating this procedure for different initial configu-
rations, one may then obtain the distribution of pinning
energies g(e) from the site energy statistics, normalized
according to f g(e)de = 1/d . [In the corresponding
Coulomb gap problem in semiconductors, the function g(e)
would be the electronic density of states [4].] Previous
investigations have shown that minimizing the total energy
with respect to only single-particle hops already yields at
least qualitatively reliable estimates for the energy level
distribution [4,7,8]. Details of our investigations for a
variety of filling fractions f and values of A/d will be
reported elsewhere [11]. In this Letter, we shall instead
use these techniques to calculate the distribution of pinning
energies directly from experimental data.

The positions of columnar defects and flux lines in
a Bi2Sr2CaCu208 (BSCCO) crystal were determined si-
multaneously by a combined chemical etching/magnetic
decoration approach (for details, see Ref. [6]). A digi-
tized scanning electron microscopy image of the positions
of N = 162 flux lines and N~ = 686 columnar defects
(hence f = 0.24) for a BSCCO sample irradiated with

corresponding matching field B~ = 118 G (d = 4400 A.)
and decoration field B = 27 G (ap = 9400 A) is shown in

Fig. 1. The critical and irreversibility temperature under
these conditions are T, = 87 K and T;„=81 K, respec-
tively. Assuming the flux line distribution is frozen in
at T;„, we estimate that the effective London penetration
depth is A(T; ) = 4200 A = 0.45ap [12],and A/d = 0.96.

In Fig. 2 the structure factor S(q) for the flux lines
is shown, as obtained from S(q) = ~ g e'q " 'j~ by
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FIG. 2. Vortex structure function S(q) as obtained from
experiment (thick line), and from simulations with w = 0
(dashed), and w = O. 1eII (thin line), averaged over 100 different
assignments of random-site energies.

FIG. 3. Normalized distribution of pinning energies G(E) =
2eIId'g(el as a function of the site energies E = e/2eII,
averaged over 100 runs (A/d = 0.96, w = O. leo). The mean
chemical potential is p, /2eo = 0.65.

averaging over directions in Fourier space (thick line).
Clearly the vortex distribution is highly correlated, with

S(q) displaying a peak at qpap = 277. We have used the
experimental defect and Aux line positions as an initial
state for the Monte Carlo routine. In order to minimize
boundary effects, we have kept the configuration fixed in
a frame extending 10% (=33) inwards from each of the
rectangular boundaries. This leaves 464 sites and 106 dis-
placeable particles for the simulation. For vanishing site
randomness (w = 0), about 20% of the fiux lines are
moved in the course of the energy minimization process.
Using the more realistic value w = 0.leo, we find typi-
cally 40% changes with respect to the original experimen-
tal distribution. But in both cases the highly correlated
character of the fiux line distribution is preserved (Fig. 2).
Substantially stronger disorder would destroy the peak
in 5(q). Similarly, for considerably lower values of A

(A/d ( 0.2), the spatial correlations also disappear, be-
cause the site randomness would then dominate over the
interactions. The correlations we do find strongly support
the assumption that the effective London penetration depth
is A(T; „)) Ap [12]. Although there is no immediate trans-
lation from 5(q) into the distribution of pinning energies,
the presence of spatial correlations suggests the possibility
of correlations in g(e).

The distribution of pinning energies for the 464 "inner"
sites, as obtained from averaging over 100 runs with
different assignments of random-site energies, drawn from
the same distribution P(t;) with width w = O. lap, and
using A(T;„) for the interaction range, is shown in Fig. 3.
(Results for the distribution of pinning energies are quite
insensitive to the precise value of w. ) The Coulomb

gap in g(e) is remarkably wide, even though A = 0.45ap
is relatively small, Its width amounts to =0,5eo at half
maximum [2epd g(e) = 0.8], i.e. , almost a third of the

total width of g(e). Near its minimum, this soft gap may
be described approximately by the formula

(3)

with an effective gap exponent s,qi- = 1.2. In the imme-
diate vicinity of the chemical potential, this power law is
smeared out, and actually g(p) ) 0 (but very small) due
to the finite range of the interactions. In the limit A

and for small filling, s,qr
= 3 may be reached [11].

From this distribution of pinning energies, we may now
infer the transport properties in the variable-range hopping
regime. Since we used A(T; ) = 4200 A in determining

g(e), our results apply to transport slightly below T;„„=
81 K, where the vortices first localize in a Bose glass with

very slow dynamics. Note that for magnetic fields B (
@p/A, i.e., A ( ap, Ei = Ep and thermal renormalizations
of pinning energies become relevant only for T] = 0.9T,.
(=78 K here) [3]. Thus, all temperatures T ( Ti = T;,„
may be considered as "low."

For low currents, the most important excitation is a
Auxon sending out a pair of superkinks of separation Z to
another columnar defect at distance R, such that the tunnel-

ing probability between the pins is optimized [3]. Thus, we
must minimize the free energy of two superkinks of size
R and separation Z, BFsK = 2ERR/d + ZA(R) —fLRZ
[see Eq. (4.13) of Ref. [3]]. Here, the first term consists
of the energy of the double kink, with ER = Jr|Up d, and
the third one derives from the Lorentz force fL = ItIp J/c
induced by the current J. The second contribution stems
from the fact that for a hop of distance R, the available en-

ergy states lie in the interval [p„,p, + A(R)], where b, (R)
is determined by the equation f" g(e)de = R . Mini-
mizing first for J = 0 gives the longitudinal extent of the
kink to be Z" = —2ER/d(BA/BR)R*. To first order in J,
one subsequently arrives at J@p/c = A(R*)/R", and thus
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FIG. 4. Log-log plot of R*(J)/d vs j = Jpod/2eoc, as ob-
tained from g(e) in Fig. 3 (filled circles), compared to the non-
interacting case (open circles).

6F* = 2Etr R*(J)/d is the result for the optimized free en-

ergy. The latter finally enters the resistivity p as an energy
barrier for thermal activation, 8 = pcJ exp( —BF*/keT).

In the regime where Eq. (3) holds, the final result
from these considerations for the highly nonlinear current-
voltage characteristics may be cast in the form

8 = poJ exp[ —(2E&/)'rB&) (Jo/J)" ],
where p is an exponent generalizing Mott's law (po =
1/3), which is valid in the case of vanishing interactions.
For long-range interactions producing a Coulomb gap of
the form (3), one finds p = (s + I)/(s + 3). Figure 4
shows a log-log plot of R*(J)/d vs j = J@od/2eoc, de-
rived from the distribution of pinning energies in Fig. 3,
as compared to a similarly calculated curve with the vor-
tex repulsion being switched off. While in the latter case
the result is indeed a straight line with slope —1/3, inter-
actions considerably enhance the pinning by raising the ef-
fective Mott exponent to p, ff = 0.5. For 1 0, however,
the cutoff of the interaction at A reduces p, ff somewhat.

Similar to the gap index s, from which it is derived, p
should not be understood as a universal number, but rather
as some effective exponent p,«conveniently describing
the I-V characteristics. Its value in general depends on
both the filling f and the interaction range A/d; its maxi-
mum value p, tt = 0.68 is reached for A ~ ~ and small f
[11].These results clearly rule out the mean-field estimate,
which would yield s = 2/o. —1 and p = 1/(I + o.) for a
potential V(r) ~ r (o. ( 2; a logarithmic interaction is
recovered for o. 0). They seem to be more consistent
with the scaling analysis by Fisher, Tokuyasu, and Young
for the supposedly equivalent gauge glass model, which
yields 2/3 ~ p ~ 4/5 [9]. Yet, even the large-system
simulations by Mobius and Richter for the I/r potential
have apparently not reached the fully asymptotic regime
[8], if it exists at all. Also, our derivation of R (J) from

g(e) constitutes an approximation which neglects subtle
correlations, e.g. , the spatial clustering of those sites which
are energetically close to p [7,11], and may be subject to
corrections in the limit J 0.

Pinning to point defects is subject to much stronger
thermal renormalization than pinning to correlated disor-
der. For very low currents, additional point defects may,
in fact, trap the spreading of the double-superkink con-
figuration considered above; however, this becomes effec-
tive only on unphysically large length scales [3], and thus
should not alter our results for realistic samples.

In summary, we have demonstrated that the vortex-
vortex repulsion can lead to remarkable correlations both
in real space and in the distribution of pinning energies,
even for A = ao. An important consequence of these
correlation effects is the drastic enhancement of flux line
pinning to columnar defects in the Bose glass phase,
whenever A ~ ao.
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