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Quantum Decay of One-Dimensional Supercurrent: Role of Electromagnetic Field
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The quantum decay of a one-dimensional small supercurrent is a charge non-neutral process which
involves an electromagnetic field. I take proper account of magnetic and electric screening, respectively,
and find that the electromagnetic field contributes an exponentially small muftiphing factor e "/ —e
to the quantum decay rate with a the fine structure constant and A a numerical constant of order
unity. This means that a circulating supercurrent lives forever. Possible relevance with several recent
experiments is discussed.

PACS numbers: 74.40.+k, 03.65.Bz, 41.20.—q, 74.20.—z

One of the most fundamental questions about super-
conductivity is on the stability of circulating supercurrent.
Shortly after Kamerlingh Onnes discovered superconduc-
tivity, it was found that once the circulating supercurrents
were set up they were observed to flow without measur-
able decrease for a year [1]. Since a supercurrent is due
to the gradient of the phase of the superconducting order
parameter, and the phase can only change an integer times
2~ when it goes once around a singly connected loop, a
metastable supercurrent corresponds to the phenomenon
of fluxoid quantization associated with an integer wind-

ing number [2]. When a supercurrent decays, it can only
decay by a discrete amount due to the changing of the
winding number by an integer, meanwhile overcoming a
topological barrier. For a thin superconducting wire the
topological barrier is smaller than that for a thick wire be-
cause of reduced coherence volume. In the 1960s Little
[3] realized that in order for a supercurrent to decay part
of the wire of a size of the coherence length must become
normal due to thermal fluctuation. This was followed by a
beautiful theory of Langer, Ambegaokar, McCumber, and
Halperin (LAMH) [4] on the thermal decay of a supercur-
rent. The theoretical prediction agrees with experiments
within about a factor of 2 in the exponent of thermal
activation [5]. Typically, for a wire with a width of sev-
eral thousand angstroms, the thermally broadened resis-
tive transition region is of the order of 10 3 K.

However, the following question remains. Namely,
for temperatures sufficiently low that the thermal de-
cay rate of supercurrent is negligibly small, what is
the supercurrent stability against quantum mechanical
fluctuations? This question is of current relevance
since there exists several more or less conflicting ex-
perimental reports [6—8] of the resistive transitions
of superconducting wires as thin as several hundred
angstroms. For the earlier experiment by Giordano,
a crossover was observed from the LAMH region to
a previously unknown region which was suggested
[6] as due to a new macroscopic quantum tunneling
phenomenon in the spirit of Caldeira and Leggett [9].

This has stimulated theoretical investigations on quan-
tum phase slips in various dimensions [10—14]. For a
superconducting wire the quantum dynamics of the order
parameter in one-dimensional space plus one-dimensional
imaginary time (1 + 1)D [11] is similar to Maki's
soliton-antisoliton model [15] for charge-density waves
(however, see Ref. [14]). The electromagnetic (EM) field
accompanying the quantum phase slippage outside the
core spreads into three-dimensional space and should be
treated in (3 + 1)D, similar to Zhang's superconducting
cosmic string model [16], in which electric and magnetic
fields were treated equally. In a realistic superconducting
wire, the roles of magnetic and electric fields are rather
different: the London penetration depth AL for current
screening can be one or more orders of magnitude larger
than the Debye shielding length A& for charge screening.
In this paper I study the influence of the EM field on the
quantum decay rate of a one-dimensional supercurrent,
with a quite surprising result: For a small supercurrent
density J (reasonably smaller than the critical current
density 1, of the wire), the EM field contributes to
the quantum decay rate a minus exponent which is of
the order of the inverse fine structure constant. This
effect seriously reduces the possibility of experimental
observation of quantum decay of 1D supercurrent. I will
give an intuitive explanation of this result and discuss the
relevance or irrelevance with experiments [6—8]. This
work was briefly reported earlier [17].

Let us consider a homogeneous superconducting wire
with cross-sectional area o.. Assume the width ~o. of the
wire is smaller than or comparable to the temperature-
dependent coherence length $ so that it is quasi-one-
dimensional. ~o. is also smaller than or comparable to
AL such that a supercurrent is homogeneously distributed
across the wire. Experimentally [6,7] ~oranges from a-
few hundred to a couple of thousand angstroms (~o. =
g, &L). Neglecting effects due to weak links and grain
boundaries and choosing the wire along the z axis, the
Euclidean action SE for the dynamics of the system is de-
scribed by a phenomenological time-dependent Ginzburg-
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Landau theory [10—18]:
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where S„„, in Eq. (3) from amplitude variations of the
order parameter remains unchanged [18] and SFM is the
EM field contribution from phase vortices outside the core
region. Using the Lorentz gauge and choosing A[ = A2 =
0 from the symmetry of the system [16], the extreme
condition BSF/B(A, p) = 0 leads to Maxwell equations
(i = 3, 4)

(2)

Here r is imaginary time and 62(x, y) is a two- I density and supercurrent density from the metastable state,
dimensional delta function. (p, A) are potentials of respectively. Now consider charge superconductors. One
EM fields (E, H). W is the order parameter functional can write
which includes both amplitude and phase. e* = 2e is

F core + EM ~the Cooper pair charge, a, b are usual Ginzburg-Landau
coefficients, and a/b = Ao with Ao the equilibrium value
of the energy gap. g = Qy/a and Qy/v = vF/~3 with
IjF the Fermi velocity. The intrinsic resistance of the
superconducting wire [4] is proportional to the rate of
quantum phase slippage:

S,„„, = 47ro Qvy a/b. (3)

Outside the core region the amplitude of the order
parameter is basically constant while the phase 0 of the
order parameter varies. The time derivative and space
gradient of 0 correspond to changes of the superAuid

where the fIuctuation prefactor F is less important and
will not be discussed here. AS~ is the difference between
a topologically nontrivial saddle point action and that of
the metastable current carrying state. To get a better
physics picture I choose a dimensionless frame (p, p4) =
(pi, p2, p3, p4) in which space p is measured in units of g
and imaginary time p4 in units of ~3//vF. Dimension-
less potentials A' = Agy/a/e, A4 = qQ /pa/e*, and
the dimensionless order parameter is measured in units
of 50. To see the basic topology let us first consider a
neutral superfluid (setting e* = 0) where the EM field
is not involved. The saddle point picture is a vortex-
antivortex pair [11,16] in dimensionless (1 + 1)D, sit-
ting in the background of a dimensionless current J/J,
(see Fig. 1). The separation between the pair is 2p and

p = J,/J. Within the vortex core (of radius unity) the
amplitude of the order parameter drops to zero, contribut-
ing to the action an amount

2 A', + V' A,
' = —2g28 (pl, p2) n; J;(p3 p4), (5)

t9 p4

o aQvy
SEM

b

00
dp3 dp4 g

i=3 ~Pi

X J;(p( = p2 = O, p3, p4). (7)

First let us look at the structure of a single phase vor-
tex in (1 + 1)D due to EM coupling. For a vortex or an-
tivortex centered at the origin, O(p3, p4) is determined by
(& /&P3 + & /&P4) 0 = ~2~6 (p3, p4). Using this rela-
tion and making a Fourier transformation (p 1, p2, p3 p4) ~
(q&, q2, q3, q4), one can solve Eqs. (5) and (6) and find the
action for a single vortex:

J; = BO/Bp; n;A;(pi = p2 = 0, p3, p4)

are the dimensionless current (i = 3) and charge (i = 4)
densities. Here g~ = vF/~3c, gz = o ya/be*, n3 =
e* /fic = 4n, and n4 = ~3e* /fivF. These coefficients
are related by n3/n4 = i1i, 2rI2ni = o./pi, 2q2n4 ——2 = 2 2 =
o./Ao, and AD/AL = vF/~3c. Inserting Eq. (5) back into
the Euclidean action, one has

single
EM o aQvy

bA,

1 L
dg3 dg4 2 2 2 ln ln —,

q3[1 + (o/Aa)M(q3 q4)] + q4[1 + (o/AL)M(q3 q4)] 8n (8)

where M(qq, q4) = ln[(q, + q3 + vFq4/3c )/(q3 + vFq4/3c )] and q, —= 1 is the ultraviolet cutoff due to the vor-
tex core. L is the length of the wire and g/L serves as the infrared cutoff. When deriving the last equation in

(8), I have made a transformation q4 = (Ao/AL) q4 = (vF/~3c) q4, which leads to a "squeezed" phase vortex in
dimensionless (1 + 1)D due to anisotropic electric and magnetic screenings (see Fig. 2). The anisotropy of this
squeezed vortex is vF/~3c —O(1/500). It is easy to understand this anisotropy since we know that, in a super-
conductor, current around a vortex spreads over a region of size A& and charge should spread over a region of
size A~.
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FIG. 1. A vortex-antivortex pair in (1 + 1)D as the saddle
point picture for an uncharged superfiuid.

Let us look at the action due to a vortex-antivortex pair
(see Fig. 1). Using linear superposition of the phase, it is
straightforward to write

pair
SEM oaQvy

bk dg3 dg4

4 sin (pq4)
0'3I:1 + (o /~D) M(e3 94)] + V4I 1 + (~/~1-) M( I~ I4)]

(9)

pair
SEM 1 ~ J,

lnln —' =
fi, n 4 J

A

where A = (~/4) lnln(J, /J) for any reasonable current
J. This apparent universal result is independent of
Ginzburg-Landau coefficients and the details of the wire
(e.g. , o.). Equation (10) is easily satisfied since ~o. is
comparable to Al in the experiments (cf., below). The
fine structure constant a = 1/137. For J,/J = 10'—
10, SEM /h ranges from 90 to 239. So the EM field
contributes an exponentially small multiplying factor,

—SEM /A —A, c/e —100 (12)

FIG. 2. Flow around a squeezed phase vortex centered at
origin. It is illustrative and does not represent real anisotropy,
which is much larger.

Now the important length scale for the problem is the
distance between the pair, and g/L is no longer the
relevant infrared cutoff. For current J satisfying
the condition

2o J,
ln —'~1,J

I get

to the quantum decay rate of supercurrent. This effect
essentially eliminates the possibility of observing quantum
decay of 10 supercurrent experimentally, let alone core
contributions [Eq. (3)]. So 1 conclude that the lifetime of
a small supercurrent in a superconducting ring at very
l'ow temperature is longer than can be measured.

Now I give some qualitative and physical explanations.
First let us look at the condition of small current.
Consider a unit length of the superconducting wire with

n, and v, the density and velocity of the superconducting
electrons, respectively. The supercurrent density J =
n, ev, and the total current is I = an, ev, . The kinetic
energy of the condensate is on, m. v, /2 = mI2/2n, e~o.
with m the electron mass. The magnetic field around
the wire is H —I/r, where r is the distance from the
center of the wire. The inductive energy (magnetic field
energy) is the integral of H2 and is roughly I21n(rl/r, ),
where r~ and r, are the long distance and short distance
cutoffs, respectively. Remembering that Az is -m/n, e,
so the condition that inductive energy is larger than
the kinetic energy gives (2o./Ai) ln(r~/r, ) ) 1, which is
basically our small current condition [Eq. (10)] since there
is an inverse relation between distance and current. So
small current means that the inductive energy of the wire
is larger than the kinetic energy of the superfluid, or
equivalently one can say that the inertia of the EM field
is larger than the inertia of the condensate Dressed. with
the inertia of the EM field, it is difficult for the phase field
to tunnel through the topological barrier. This seems to be
some kind of Coulomb blockade effect. Another intuitive
explanation is that, during the tunneling process, a large
amount of the EM field energy is dissipated, and this
overdamping tends to prevent the phase "particle" from
rolling down the "washboard" potential whose slope is
determined by the metastable current.

Therefore, for a small current the inductive energy
dominates and the wire can be regarded as an inductor
with inductance I0. On the other hand, the wire has a
capacitance C0 and one effectively has a I0C0 circuit.
Generally speaking, the probability of quantum tunnel-
ing is roughly [9] P —exp( —V/Acro), where V is the ef-
fective barrier height and co0 is the intrinsic oscillation
frequency of the circuit, cup (LoCo) 'I . Phase slip is
equivalent to a change of one fiux quantum @o = hc/2e
at some length scale (presumed of order g). So the
barrier height V is approximately Po/2Lo The rela-.
tive barrier height V/&coo —(hc/2e) (LoCq)' /2fiLO-
(Co/Lo)'I26c2/e2 —kc/e2. This is because for a line
conductor (Co/Lo)'I~ —1/c. Hence the quantum tunnel-
ing rate is P —exp( fi,c/e ), in agreem—en, t with Eq. (12).

In the light of the theory presented above, let us discuss
experimental results. In a careful experiment by Sharifi,
Herzog, and Dynes [7] for homogeneous in situ grown Pb
wires (free of grains), no macroscopic quantum tunneling
region at small current was observed for wires with a
width as thin as 220 —550 A. The only resistive transition
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observed is the LAMH region. This result actually agrees
with my conclusion of unobservability of the quantum
decay of 1D supercurrent.

Next let us turn to the experiment by Giordano [6] who
claimed to have observed a macroscopic quantum tunnel-
ing phenomenon. There are three major disagreements
between this current theory and the experiment which are
detailed below. (i) For superconducting In AL(0) is about
300 A. The experimental quantum decay region extends
down to 0.6 K below T, (T, —3 K). The cross section
o. of the wire is about (500 A)2. Since At(T)/At(0)—
n, (0)/n, (T) —1/(1 —T /T, ), we have cr/ AL (T) —0.5.
Equation (10) is easily satisfied for his small measur-
ing current, and so we believe the quantum decay rate
should be too small to be detected. (ii) If one ignores the
effect from EM field and only compares the core con-
tribution [Eq. (3)], the absolute value of the theoretical
exponent is about 50 times larger than that of the exper-
iment although the temperature dependence (I —T/T, )
agrees with each other. That simply means that the ex-
perimentally observed decay rate is still far too large.
(iii) Even if one ignores the above two points, there is
yet another qualitative disagreement between theory and
the experiment. For any fluctuation theories [Ref. [4] and
Eq. (3) here], the exponent of the decay rate due to the
vortex core contribution is proportional to the cross sec-
tion o.. So the ratio of the two exponents for wires of
o ~

= (410 A.) and tr2 = (505 A.)z should be proportional
to ~t/ro- —

2 0.66. But experimentally (Fig. 1 in Ref. [6])
the two lines in the quantum decay region have the same
slope even to the naked eye (hence the ratio of the two
exponents is 1). Taken together, these disagreements sug-
gest that the effect observed by Giordano is probably not
the macroscopic quantum decay phenomenon he claimed.
Point (iii) subtly suggests that some intrinsic length scale,
shorter than the width of the wires, has caused the ob-
served effect. Indeed there are grains of size 100—200 A
in the wires, as reported in Ref. [6]. This indicates a pos-
sible crossover from the LAMH region to one dominated
by Josephson weak links between the grains.

This possibility is corroborated by a recent experiment
[8] which observed similar effects as in Ref. [6] for
thin type-II superconducting wires inside magnetic fields.
The Josephson type barrier height was observed and the
results were interpreted as quantum creep of preexisting
vortex lines [19]between grain boundaries. Experimental
observations of quantum tunneling of vortices between
pinning sites were also reported for thin superconducting
films [20,21).

In summary, I have shown that the EM field contributes
an exponentially small multiplying factor of the order of
-e '~ to the quantum decay rate of 1D supercurrent.
In case weak link effects and preexisting vortices are
absent, a small 1D supercurrent is unlikely to decay at

very low temperatures, and there is such a thing as a one-
dimensional superconductor.
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