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"Fuzzy" Tight-Binding Monte Carlo Method: A O(N) Technique for Calculating Structural
and Electronic Properties of Materials
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We present a novel approach to computer simulations of the structural and electronic properties of
materials that scales linearly with the number of electrons in the system. The approach is based on
the following: (i) The introduction of a "fuzzy" Monte Carlo technique based on the approximate
calculation of the total energy of the system. We show that a statistical error in the energy may be
included in the thermal distribution via a new formulation of the Glauber dynamics of the Monte Carlo
method. (ii) The calculation of the total energy via a recursion technique for a set of random initial
states and a decomposition into individual atomic contributions. Applications to the simulation of liquid
iron, silicon, and carbon are presented.

PACS numbers: 71.10.+x, 71.20.Ad

The development of ab initio molecular dynamics tech-
niques based on pseudopotentials and plane-wave basis
sets can certainly be considered as a major step forward
in the theory of the structural, electronic, and dynamics
properties of complex systems [1—3]. The only draw-
back is that even on the fastest computers the application
of these techniques is limited in practice to systems with
N ~ 100 atoms, because for larger systems the computer
time scales as N as a consequence of the Pauli exclusion
principle for the electrons imposing global orthonormaliza-
tion constraints. Molecular-dynamics (MD) calculations
within a non-self-consistent tight-binding (TB) framework
allow one to treat systems with a few hundred atoms (typi-
cally N ~ 300), with still reasonably accurate results in

many cases [4,5]. However, the O(N3) scaling problem re-
mains unsolved. This problem of cubic scaling has clearly
been recognized as the major obstacle to further progress
in computational materials science, and a number of solu-
tions have been proposed [6—10].

It is the purpose of this paper to propose a new access
to "O(N) techniques. " Our approach is based on two es-
sential ingredients: (1) We propose a new "fuzzy" Monte
Carlo (MC) simulation technique which does not require
the exact calculation of the total energy, but admits that
the change AU in the total energy upon moving the atoms
is known only within a certain statistical error. This er-
ror can be included in an effective thermal distribution.
(2) The energy is calculated within a tight-binding frame-
work at different levels of accuracy: (a) If one proceeds
via exact diagonalization of the TB Hamiltonian, the error
in AU results from the simultaneous move of all atoms.
This leads to a very efficient TB-MC technique but still
with O(N3) scaling. (b) If AU is deduced from the lo-
cal electronic densities of state (DOS) calculated via the
real-space recursion technique [11],O(N ) scaling is ob-
tained. (c) If b, U is calculated on the basis of a local de-
composition of the total DOS calculated via the recursion

technique for a set of random initial states, O(N) scaling
is achieved.

The fuzzy Monte Carlo method we propose is based
on a reformulation of the standard Glauber dynamics
[12]. Let b U be the change in the total energy of the
system if its configuration changes from r to r' [in the
following, we use r as a shorthand notation for the full
set (Ri, R2, . . . , R~) of atomic coordinates] and let s be a
random number with the distribution

——1x
Pg(x) = 4ktsT cosh2 (1)

2kpT
Then the following algorithm is equivalent to the Glauber
dynamics: (i) Generate the new configuration
compute AU. (ii) Generate the random number se with
the distribution (1) (N.B.: If z is uniformly distributed
in the interval z E (0, 1), then s» = k&T ln[z/(1 —z)] is
distributed according to P~(x).) (iii) Set Y = AU + $.
(iv) If Y ~ 0, the transition from r to r' is accepted; for
Y ) 0 it is rejected.

The important thing to realize is that the distribution of
g can be made to include a possible statistical error g in
~U,

~U=AU+ ~, (2)
where AU is the exact value of the change in energy. In
this case one sets

Y=AU+s =AU+g+g, (3)
with the relation g = ri + g defining a new random
variable f correcting the distribution. The probability
distribution Pt. (x) of the new variable is determined by
the convolution

Pg(x) = P„(x')Pg(x' —x) dx', (4)

where P~ (x) is the correct thermal distribution [see
Eq. (1)] and P„(x) is the statistical distribution of the
errors g in AU (which is Gaussian according to the
central limit theorem). In principle, Eq. (4) may be
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deconvoluted using fast-Fourier-transform techniques, but
in practice it should be sufficient to approximate Pr(x) by

Pg(x) = CPg. (x) + (1 —C)6(x), (5)

where C C (0, 1) is a constant and P~* is the Glauber dis-
tribution (1) corresponding to a temperature T*. C and T*

are determined by the condition that the second and fourth
moments of the distributions of s and of g + s' are equal
(odd moments are zero). This leads to

C = 7(1 —q~)2

5q4 —10q~ + 7
I I I

I

I I I I
I

T* = T (1 —q2)/C (7) 8 iQ 12

1' = AU(r, r') + ksT* in[A/(1 —A)].

If v ) C, set

Y = AU(r, r') .

(8)

(9)

(iv) For 1' ( 0 the transition r ~ r' is accepted, otherwise
it is rejected.

This new MC algorithm has been tested against stan-
dard MC techniques. The standard procedure consists
in sequential displacements of individual atoms. At
each step, one has to calculate the contribution of one
atom, say k, to AU(r ~ r') = U(Rt, . . . , RI„.. . , R~)—
U(R~, . . . , RI„.. . , RA). The fuzzy MC allows one to cal-
culate AU for a simultaneous move of all atoms,

6 U(r ~ r') = U(R', , . . . , Rk, . . . , R~)
—(Rt, . . . , Rk, . . . , R~), (10)

but to except or reject the atomic displacements from
Rk to Rt, individually. To replace AU by b, U [Eq. (10)]
results in an error

gi = U(Rt, . . . , R~, . . . , R~) —U(R&, . . . , R~, . . . , R~),

but if the AR; = R,' —R; are random displacements with
a Gaussian distribution, then gq is again random with a
Gaussian distribution. Its variance may be determined by
a sampling, and the error may be included in the effec-
tive thermal distribution P~ [see Eqs. (2)—(9)]. Figure 1

compares the result of a classical MC calculation for liq-
uid Fe at T = 1840 K (with the interatomic potentials de-
scribed by effective two-body tight-binding-bond forces
[13])with a fuzzy-MC calculation performing a simulta-

for the case of a Gaussian distribution of g with a
second moment pq(g) = tT„and q = p2(g)/p2(g) =
cT2/(vr2/3) (k&T)2. The "fuzzy-MC" algorithm is then
defined by the following: (i) For a proposed change
of configuration from r to r', calculate AU(r, r'), verify
that it follows a Gaussian distribution, and determine the
second moment p2(q). (ii) Calculate C and T* according
to Eqs. (6) and (7). (iii) Generate a uniformly distributed
number v H (0, 1). If v ( C, generate another uniformly
distributed number A B (0, 1) and determine

r { j

FIG. 1. Comparison of the pair distribution functions for
liquid Fe, calculated via classical (broken lines) and fuzzy (full
lines) MC.

neous move of all 1263 atoms in each step. The excellent
agreement of both results testifies to the correctness of the
fuzzy-MC method.

The full power of the fuzzy-MC method is exploited in
combination with a tight-binding calculation of the total
energy of the system. It has been shown [14] that on the
basis of local-density-functional theory and within a tight-
binding framework, the total energy U may be written as
a sum of a pairwise repulsive term U„,p describing the
electrostatic, exchange-correlation, and nonorthogonality
contributions and a bonding band-structure term Uh, (r)
given by the sum of the one-electron energy eigenvalues
e„of the occupied states,

U = U„,p + g e„. (12)
e~~EF

At each MC move AUb, is calculated by diagonalizing
the TB Hamiltonian HTB. Hence, with individual particle
moves, the computational effort scales as N4. The
alternative is to displace the atoms simultaneously. But
then the acceptance rate for stochastic moves decreases
as P„, ~ (P,'„) (where P,'„ is the acceptance rate for
single-particle moves). The fuzzy MC allows one to
calculate AU for a simultaneous move of all atoms and
leads to an O(N3) algorithm.

The next simplification consists in using the recursion
method to calculate the contribution of each individual
atom to AUb, from the change in the local DOS upon a
simultaneous move of all atoms. This leads to an algo-
rithm with O(N2) scaling for relatively small ensembles
(where the number of atoms within the interaction sphere
of the TB Hamiltonian is of the same order of magnitude
as the total number of atoms in the system). For very
large systems the use of linked-cell algorithms for gene-
rating and storing the nearest-neighbor information [15]
allows one to achieve even O(N) scaling.
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(14)

Finally, we can reduce the computational effort to a
calculation of the total DOS, averaged over a set of
initial states consisting of local orbitals with random
phases, and use the technique proposed by Varga [16]
to decompose the total DOS into a set of local DOS's
that are then used to calculate AUb, . Application of the
recursion technique to an initial state ~uo) constructed
by superposing the local orbitals ~i, n) with random
phase factors exp(2~i'; ) [6; uniformly distributed in

(0,1)] leads to the total DOS n(E) = P„~w„~ B(E —e„)
(with w„= (uo ~ P„) where e„and P„are the eigenvalues
and eigenstates, respectively, generated in the recursion
sequence), plus a random error whose magnitude may
be reduced by averaging over several random initial
states. This error is added to the error arising from
the simultaneous move of all atoms. The decomposition
proposed by Varga is based on the observation that the
weights w„' = (i, n

~ P„)describing the contribution of the
local orbital ~i, n) to the eigenstate ~ti't„), n = 1, . . . , L of
an I -step recursion sequence may be expressed as

Z —I

&m +m n
m=0
L—1

&~~ &m Pm &n (13)
m=o

where ~u ) is the mth term in the recursively defined basis
for the tridiagonal representation of HTn and the P (e„)
are the orthogonal polynomials belonging to the eigenstate
~P„) and the eigenvalue e, (see Ref. [11]). The partial
local DOS is then given by

n; (E) = g (w„' )'(w„('6(E —e„) .
n=1

Again, the stochastic fluctuations introduced by the ran-
dom initial states may be controlled and included in the
effective thermal distribution. In this form the fuzzy TB-
MC algorithm has O(N) scaling.

We have applied all three variants of the technique to
calculate the structural and electronic properties of liquid
carbon and silicon. The TB Hamiltonian is based on the
optimized parametrization proposed by Goodwin, Skin-
ner, and Pettifor [17]. Figure 2 shows the pair correlation
functions of liquid silicon at T = 1740 K, calculated for
a 512-atom ensemble using the O(N ) and O(N) versions
of the fuzzy TB-MC method [the O(N3) approach gives
indistinguishable results]. The virtually identical results
obtained by the different techniques demonstrate that the
approximations used for the calculation of the single-
particle energies are well controlled. Figure 3 compares
the pair correlation functions for low-density amorphous
carbon at T = 5000 K and p = 2.0 g cm 3 with the TB-
MD results of Wang, Ho, and Chan [18] and with the
ab initio MD calculations of Galli et al. [19]. The good
agreement with the earlier TB-MD [18]calculations based
on the same Hamiltonian demonstrates that the fuzzy-MC
technique is as accurate (the remaining small differences
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FIG. 2. Comparison of the pair correlation functions g(R) for
liquid Si, calculated for 512-atom ensembles using the O(N)
(full lines) and O(N2) (broken lines) fuzzy-MC algorithms.
Compare text.

in the region of the first peak are within the statistical
limits of the 64-atom ensemble used in TB MD) as con-
ventional TB-MD methods. We also show the ab initio
density-functional MD [19] results to demonstrate that the
TB Hamiltonian leads to realistic results. We also note
that the quadratic and linear techniques produce identical
results.

Figure 4 shows the scaling of the CPU per MC step
with the number of atoms in the ensemble. The CPU
times are for calculations on an IBM-RISC6000-375
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FIG. 3. Pair correlation function g(R) and bond-angle dis-
tribution f(6) (inset) for low-density liquid carbon at T =
5000 K. Full line, present work (fuzzy TB MC with linear
scaling for a 512-atom ensemble); thin lines, TB MD for a
64-atom ensemble and using the same TB Hamiltonian (after
Wang, Ho, and Chan [18]); dashed lines, ab initio MD for a
64-atom ensemble (after Galli et al. [6]).
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of the new fuzzy-MC algorithm with efficient real-space
techniques for the calculation of the electronic spectrum.
Simulations for N —1000 atoms are possible even on fast
workstations. We also remark that the technique has many
features that make parallelization very easy.

This work has been supported by the Austrian Sci-
ence Foundation (Project Nos. S5908-PHYS and P9678-
PHYS).
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FIG. 4. Variation of the CPU time per MC step with the
number of atoms in the O(lV') fuzzy TB-MC methods: full
line, x = 1; dashed line, x = 2; dotted line, x = 3. The results
given in the graph refer to I-Si described by the Goodwin-
Skinner Hamiltonian. Compare text.

workstation. For the case of liquid Si we find that
the O(N3) version is fastest up to N = 80, the O(N )
approach for 80 ( N ( 700, and the O(N) technique for
N ) 700. The CPU times per step are very similar to the
values given by Ordejon et al. [7] for their more localized
basis functions. Simulations for N = 1000 are possible
on fast workstations. However, the decisive parameter is
the number of occupied eigenstates; hence, for systems
with more electrons per atom (e.g. , transition metals),
these numbers will be lower by a corresponding factor.
Temperature also has a certain inhuence as the error in
AUb, must be reduced at lower T, e.g. , by averaging
the total DOS over a larger number of random initial
states. We also note that the numbers given refer to
a constant setting of all parameters, independent of the
number of atoms. Using a "linked-cell" algorithm in
conjunction with our "quadratic" method will allow one
to achieve linear scaling for N ) 600—1000. With our
"linear" method, the number of random initial states may
be reduced for large systems without loss of accuracy, so
that even sublinear scaling may be achieved.

In conclusion, we have presented a new tool for per-
forming mixed classical —quantum-mechanical simulations
of the structural and electronic properties of materials. The
basis of the technique is the combination of the advantages
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