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Nanosubharmonics: The Dynamics of Small Nonlinear Contacts
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We observed the generation of subharmonics and chaos in a nanometer-sized mechanical contact.
To first order, the behavior matches that of macroscopic systems, with some intriguing secondary

differences.

As the occurrence of periodic behavior (subharmonics) is related to the coefficient of

restitution, it may be possible to image local energy dissipation with nanometer resolution.

PACS numbers: 62.40.+i, 05.45.+b, 46.30.Pa

Countless generations of children have performed em-
pirical observations of bouncing balls, but it was not until
early this century that Raman began to study systemati-
cally the height to which steels balls dropped on glass
would rebound [1]. He used the term coefficient of resti-
tution to describe the ratio of the relative velocities after
and before impact. In materials that can undergo plastic
deformation, the energy lost is directly related to the dy-
namic hardness, which may differ from the static hardness
by as much as an order of magnitude [2]. Contemporary
problems range from hitting baseballs [3] to ships striking
against a quay [4]. Two new aspects are brought together
in this paper. First, there is great interest in the behav-
ior of nonlinear systems subject to periodic excitation,
and there exists a well-developed mathematical appara-
tus to describe the response. Second, much attention has
recently been placed upon studies of the mechanical be-
havior of contact between materials on a very small scale,
which can be investigated experimentally using scanning
probe microscopes. An important motivation is to find out
how what happens on a small scale relates to what hap-
pens on a big scale, and in particular whether phenomena
that are predicted by macroscopic continuum models can
be found in very small contacts.

A seminal analysis of the dynamic problem has been
given by Pippard [5]. He considered a loudspeaker laid on
its back, with a lightly loaded pin held against it by means
of a spring. The contact between the loudspeaker and the
pin is characterized by infinite stiffness in compression
and infinite compliance in tension; the contact can push
but it cannot pull. The accelerating force due to the
spring is taken as independent of deflection. When the
loudspeaker is excited with a small amplitude at a given
frequency, the pin remains in contact and moves with
the same amplitude. If the amplitude is increased, the
acceleration of the loudspeaker may be greater than the
acceleration that the spring can impart to the pin, so
that contact is lost. The motion will then consist of a
series of impacts between the loudspeaker and the pin.
It is still possible for the motion to be periodic if each
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impact occurs at the same phase and the velocity of the
pin immediately following an impact is the reverse of its
velocity immediately before the impact. The difference
between the relative velocities after and before impact,
described by a coefficient of restitution less than unity, is
compensated by the upward velocity of the loudspeaker
at the moment of impact. More than one cycle of the
motion of the loudspeaker may occur between impacts,
and so the motion of the pin can exhibit subharmonics
of the exciting frequency, as depicted schematically in
Fig. 1(a). A given periodic solution may be either stable
or unstable against small variations in the time interval
between impacts. If the coefficient of restitution is &, the
maximum acceleration of the loudspeaker is ay and the
free acceleration of the pin is a, then a subharmonic of
period n can be stably excited if
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This analysis predicts a rich variety of behavior. In
general, as the loudspeaker amplitude is increased succes-
sively higher period subharmonics may be excited, spaced
by amplitudes for which no solution exists and at which
the motion is aperiodic, i.e., chaotic. This is equivalent to
moving up the y axis of Fig. 1(b) for a given value of ¢.
But for values of & close to unity, corresponding to almost
elastic impact, there may be several stable values of n.

This early description has been extended in two signifi-
cant ways. Mehta and Luck have studied the time
evolution of a bouncing ball on a vibrating platform.
They furthered earlier work for ¢ = 0 [6] to the case 0 <
& < 1[7]. In this case a ball will come to rest after a finite
time (albeit after an infinite number of bounces) [8]. Then
the ball loses all memory of its previous history, just as it
does when & = 0, and so periodic motion is inevitably
stable. General trajectories are eventually periodic; the
time taken to explore phase space and find the periodic
trajectory seems to vary as (1 — &)”%,v = 5. Hindmarsh
and Jeffries have considered an impact oscillator in which
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FIG. 1. (a) The heights of the mass and the transducer
as a function of time. The broken (solid) line represents
a nonperiodic (periodic) trajectory of the mass. In our
experiment, the mass was the tip of an atomic force microscope
(AFM) cantilever. (b) Regimes of stable periodic trajectories
for the mass as a function of e and the ratio a/ay. The shaded
areas are where the conditions of Eq. (1) are met.

a mass is mounted on a viscous spring, the other end of
which is driven sinusoidally [9]. The mass collides with
a rigid wall. This system exhibits behavior which has
many similarities with the Pippard configuration, but there
is a significant difference which depends on the position
of the wall. If the wall is closer than the rest position
of the mass so that it forces the spring into compression,
then with increasing amplitude of excitation the regimes
of stability for subharmonics occur in order of increasing
n, as with the pin on the loudspeaker. But if the wall
is beyond the rest position of the mass, then the order is
inverted, e.g., the stable regime for period 3 occurs for a
lower amplitude range than for period 2. The stability of
this system has also been studied [10].

By using an atomic force microscope (AFM) [11], these
subharmonic phenomena can be studied on a nanometer
scale. The acceleration term ao in Eq. (1) varies linearly
with the vibration amplitude and as the square of its fre-
quency, so that by using a high frequency the displacement

amplitude required to separate tip and sample is consid-
erably reduced. In pioneering work on the detection of
high-frequency vibrations in an AFM, the movement of
the cantilever below its resonant frequency was measured
[12]. Since the stiffness of the contact between the tip
and the sample is nonlinear (because the area changes with
load), the static deflection of the cantilever gives an indi-
cation of the high-frequency vibration amplitude. In prac-
tice it is difficult to measure static displacement because of
drift, and so the signal to the transducer was modulated at
arelatively low frequency. The contact acts as a mechani-
cal diode, demodulating the surface vibration in a manner
analogous to a crystal radio receiver. In this way measure-
ments and images of elastic properties of material surfaces
have been made at frequencies up to 114 MHz [13].

It is also possible to measure the cantilever move-
ment directly at high frequencies [14], and this was the
technique adopted here (without modulation) for observ-
ing nanosubharmonics. A high-frequency transducer is
mounted on the bottom of a sample and elastic waves
cause the top surface to vibrate. The tip of the cantilever
acts as the bouncing mass, and its displacement may be
measured by the deflection of a laser beam reflected from
the back of the cantilever. The bandwidth of the opti-
cal detection extended up to 1 MHz. This is considerably
above the resonant frequency of the free AFM cantilever,
which therefore approximates well to a mass supported by
a light spring. The cantilever deflection signal could be
examined with a digital oscilloscope and also a spectrum
analyzer. The most reproducible results were obtained
with smooth, flat samples such as calcite and graphite,
and cantilever tips of silicon (oxide). The experiments
were performed in ambient conditions. Quasistatic force-
distance curves were measured with the high-frequency
excitation present, and as expected it was found that the
pull-off force (the tensile force necessary to overcome
the adhesion between the tip and the sample and sepa-
rate them) decreased with increasing amplitude.

The subharmonic behavior of the cantilever was stud-
ied as a function of the excitation amplitude and also
the mean deflection of the cantilever and hence the mean
restoring force. A representative measurement of the re-
sponse of the cantilever is presented in Fig. 2. Figure 2(a)
contains two oscilloscope traces. The upper trace is the
excitation signal to the transducer, of period 1.06 us and
amplitude at the transducer 30 V, giving a surface dis-
placement of order 1 nm and causing the tip to bounce
a few nanometers. The separations at which attractive
forces are first detected are generally larger than this.
The lower trace shows the displacement of the cantilever,
which has a period of 8.48 us, i.e., period 8. The spec-
trum analysis of the lower trace is given in Fig. 2(b). The
excitation frequency appears as a peak at 948.75 kHz.
The period 8 peak is at 117.5 kHz, and is 24 dB stronger.
The other peaks are harmonics of the period 8 peak
(bouncing motion is not expected to be sinusoidal); the
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Subharmonics: time domain
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FIG. 2. (a) Oscilloscope traces of the excitation (upper trace)  The amplitude was decreased by 0.5 V after each spectrum was

of the transducer and response (lower trace) of the cantilever
tip, i.e., the mass. (b) Fourier transform of the cantilever
response in (a). The peaks are numbered according to their
magnitude. Peak number 2 represents the excitation frequency,
peak O is the n = 8 subharmonic, and peak 4 is the free
cantilever resonance. The other peaks are harmonics of peak 0.

strongest is the third harmonic which is 15 dB smaller.
For an ideally parabolic trajectory the gth harmonic of
the bouncing frequency would have an amplitude xg 2.
We found that periods of powers of 2 were favored (the
highest achieved was period 16), which may relate to pe-
riod doubling bifurcations leading to chaos [4]. Chaos
could always be observed at high enough amplitudes of
the driving signal. For certain parameters it was possible
to observe chaos followed by periodic behavior, though
contrary to the predictions of [7] this would then revert
back to chaotic behavior, giving irregular alternation be-
tween periodic and aperiodic behavior. If a given subhar-
monic was being excited, changing the excitation ampli-
tude or the mean static force would cause the behavior to
become aperiodic. This corresponds to having & not too
close to unity and dropping out of the condition for that
subharmonic before the condition for the next value of n
is reached in Eq. (1), i.e., moving up or down the y axis
of Fig. 1(b) for a particular .

A result from a systematic study of the dependence on
excitation amplitude is shown in Fig. 3. The traces show
spectral analyses of the cantilever response, starting with
the highest excitation amplitude at the top. The excitation
frequency was 204 kHz, and the three highest amplitude
traces (10, 9.5, and 9 V) indicate period 2 behavior. This
experiment was performed with a static tensile force, i.e.,

5094

acquired.

the cantilever pulling upwards against adhesive forces.
In such conditions sidebands were often seen as in the
second trace; the origin of these is not understood. As
the excitation amplitude was decreased further the period
2 peak disappeared, and although a small peak was still
present at the fundamental frequency the oscilloscope
trace revealed that the behavior had become aperiodic.
Further reduction of the amplitude led to the period 3
behavior seen with its harmonic in the seventh trace
(7 V). At 6.5 V aperiodic behavior was again observed,
and at 6 V the cantilever no longer bounced upon the
surface but remained in contact (though with a smaller
displacement amplitude than the transducer because of
the contact compliance). This switching between stable
harmonics and aperiodic behavior is just what is predicted
by Eq. (1), but the order is wrong: the higher periods
should be seen at higher amplitudes. The inversion of the
order was found to be related to a tensile cantilever force,
and corresponds to the order of subharmonics predicted
for an offset impact oscillator with the wall placed beyond
the equilibrium position of the mass [9].

Different behavior could also be obtained by varying
the static force of the cantilever. This is another way
of changing a¢/a in Eq. (1). Figure 4 shows a series
of spectra obtained by ramping the mean position of the
sample down away from the cantilever. The excitation
frequency was 204 kHz. The two top and bottom
traces are completely flat except for noise. The top two
traces represent a repulsive load high enough such that
insufficient acceleration was given to the cantilever for it
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Frequency spectra for decreasing load
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FIG. 4. Frequency spectra as a function of load. The sample
was retracted by 21 nm after each spectrum was acquired,
corresponding to a decrease in the force of about 46 nN. The
excitation frequency was 204 kHz.

to overcome the repulsive load and lose contact with the
sample. Starting with the third trace from the top down
to the third trace from the bottom, the response moves
through aperiodic, period 3, aperiodic, and finally period 2
behavior. For the bottom two traces, the sample position
was far enough away from the cantilever such that all
contact was lost. Some hysteresis was observed, so that
the transitions occurred at slightly different points during
a reverse loading sequence.

Although the exact conditions determining the thresh-
olds and the sequence of the different subharmonics re-
main an intriguing problem, in general these results seem
to indicate that it is indeed possible to obtain on a
nanoscale the various phenomena that are predicted by
macroscopic bouncing contact models. The difference
between big and small may lie in the interpretation of
the coefficient of restitution. In macroscopic experiments,
e is dominated by bulk viscoelastic or plastic proper-
ties, which can also account for the dependence of £ on
the impact parameters. But if adhesion is present, then
e is less than unity even for perfectly elastic materials
[15]. This is because of the hysteresis introduced into
the loading-unloading force-distance relationship; when
the surfaces are pulled apart work must be done against
adhesive forces at separations where during approach the
initial attraction was much smaller. This effect can be
enhanced by local viscoelastic or plastic processes as the
surfaces are peeling apart. As the load on the contact is
reduced, it is expected that adhesive effects will increas-

ingly dominate the coefficient of restitution &, and hence
the properties which can be measured and imaged using
the phenomena described here. By calibrating the am-
plitude of the surface displacement, it will be possible to
use a scanning probe microscope to determine ¢ locally
with nanometer resolution, and to apply this to the study
of dissipative processes such as the practical problems of
the impact of powders and toner particles on surfaces and
stick-slip motion.

Christine Mayencourt’s measurements of subharmonic
behavior at the macroscale with a pin on a loudspeaker
stimulated the rest of this work. Neville Robinson’s
periodic explanations of chaos theory were not at all
chaotic.
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