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Under energetic ion bombardment, amorphous solids show substantial plastic flow in the form of
anisotropic growth. This is attributed to the relaxation of shear stresses coupled to the thermal expansion
in cylindrical thermal spikes induced by intense electronic excitations and to the subsequent freezing-in
of the associated strain increment upon cooling down. An asymptotic growth rate at high electronic
stopping power and low irradiation temperature is derived which correlates the growth rate with a few

simple material parameters without introducing any adjustable free parameter.

Good agreement with

measurements justifies the basic assumptions of the model.

PACS numbers: 61.43.—j, 61.80.Jh, 65.70.+y

Presently, bombardment of solid materials with ener-
getic ions is becoming increasingly important in material
engineering, particularly in microelectronics where it is
used to modify surfaces, to dope and to change the state
and the microstructure of surface layers, or to synthesize
buried epitaxial layers [1]. In investigating the effects of
energetic ion bombardment on free and substrate bound
amorphous thin films, two interesting sets of observations
have been made recently: (1) For sufficiently high elec-
tronic stopping powers (=1 keV/nm) [2] and sufficiently
low temperatures, stress free amorphous films showed un-
saturable plastic flow in the form of anisotropic growth
at negligible density change in which the ion beam seems
to act like a hammer rolling out the sample in the direc-
tions perpendicular to the beam. The changes in the speci-
men surfaces are typically between 107! and 107'® m?
per penetrating ion. In some but not in all cases, a certain
incubation fluence was found to be required for this type
of dimensional change [3—6]. (2) Under ion bombard-
ment, stressed amorphous samples showed surprisingly
high stress relaxation and creep rates, respectively, being
larger by orders of magnitude than those found in metals
under otherwise comparable conditions [6—-10].

For metals, it is generally accepted that irradiation creep,
for instance, is due to the stress-induced preferential ab-
sorption (SIPA) of self-interstitial atoms by favorably ori-
ented dislocations [11]. Anisotropic creep and growth of
amorphous solids under ion bombardment can certainly not
be understood in terms of such a simple defect reaction
kinetics. Nevertheless, attempts have been made to use
some kind of reaction kinetics to explain these phenomena
[12,13]. The growth of amorphous solids under energetic
ion bombardment, for instance, has been attributed to the
production of “shear units” representing some ‘“mechani-
cal polarization” of the material which is assumed to “trig-
ger irreversible shear transformations” [3—6]. Recently, a
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viscoelastic model for the creep of ion bombarded amor-
phous solids has been suggested in which stress relaxation
in locally heated regions and the freezing-in of the asso-
ciated strain increment upon cooling down are assumed
[14]. Similarly, the anisotropic growth phenomenon has
been attributed very recently to radial material fluxes in the
hot region around ion tracks [15].

In the present paper, the anisotropic growth of amorphiz-
ing and amorphous solids is discussed in terms of such a
viscoelastic model. A simple asymptotic expression for
intense electronic excitations and low irradiation tempera-
tures is derived and compared with experimental results.
An analogous approach allows one to successfully model
irradiation creep which is presented elsewhere [16].

It is useful here to briefly recall the basic processes
associated with the interaction of an energetic ion with
the electrons of the target which represents the dominant
contribution to the stopping power at high ion energies
(=1 MeV). The first step occurring in less than 107'¢ s
is electronic excitation and ionization along the track of
the projectile. These processes are perhaps followed by a
“Coulomb explosion” by which part of the energy is trans-
ferred to the atomic subsystem [3]. Local thermalization
in the electronic system will be complete at about 10~ 4 s.
Heat transfer from the electronic to the atomic subsystem
becomes substantial between 1074 and 1072 s depending
on the magnitude of the coupling between both subsys-
tems [17]. For intense electronic excitations and efficient
electron-phonon coupling, a cylindrical region around the
track of the ion may become fluid in the sense that any
thermally induced shear stress would relax in this region.
For an electronic stopping power of a few keV/nm, the
fluid zone reaches its maximum extension of some nm
within some ps [17]. In this stage, the system has vir-
tually “forgotten” most of the features of the preceding
processes. After about 100 ps the region has virtually
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cooled down to ambient temperatures but generally in a
transformed state due to the relaxation of shear stresses
during the spike phase.

Thermal spikes may also occur in displacement cascades
[18,19]. There is, however, a difference between displace-
ment cascades and electronic excitations which is crucial
in the present context. Spikes resulting from displace-
ment cascades are approximately spherical, whereas spikes
induced by electronic excitations are characterized by a
cylindrical geometry. The importance of this difference
is schematically illustrated in Fig. 1. Consider a spheri-
cal or cylindrical piece of volume V, (inner thin lines in
Fig. 1) cut out of an isotropic material. Upon heating by
a temperature difference A7, such a piece would trans-
form to a larger but geometrically similar piece of volume
Vo(1 + aAT) (outer thin line in Fig. 1) where « is the
thermal volume expansion coefficient (which is assumed
here to be temperature independent). The “stress free” or
“transformation” strain [20] defined by this procedure is
isotropic and given by trace €7 = a«AT. Now consider
the piece to be squeezed into the hole from where it origi-
nates. While the surrounding matrix would yield some-
what, thus assuming strain and stress fields of pure shear
character, the resulting “constrained” volume of the trans-
formed piece (thick line in Fig. 1) would be compressed
to a size between that of the original volume and that of
the stress free transformation volume. The elastic strain
in this inclusion is uniform and given by the correspond-
ing difference between the constrained and the stress free
strain: €/ = €¢ — €’ [20].

At this point, the geometry of the inclusion becomes

important. In the case of a spherical inclusion, the con-
(e}
(a) C T
(b)
FIG. 1. Schematic illustration of the effect of the constraint

imposed on a heated region by its cool surroundings (a) for
a spherical and (b) for a long cylindrical region. The inner
thin lines, the outer thin lines, and the medium thick lines
indicate the boundaries in the initial state, the heated stress free
state (7), and the heated constrained state (C), respectively.
In case (a), the boundaries C and 7 are geometrically similar
and the corresponding states inside C and T are both isotropic
dilatations. In case (b), C and T are not geometrically similar
and the isotropic dilatation of 7 is coupled with a shear strain
inside C.

strained strain as well as the stress free strain and hence
also the elastic strain and stress within the inclusion are
hydrostatic. In the case of a nonspherical ellipsoidal inclu-
sion and particularly in the limiting case of a long cylindri-
cal inclusion (on which we focus interest in the following),
the constrained strain and hence also the elastic strain and
stress within the inclusion are no longer hydrostatic but
contain shear components. When the length of the cylin-
drical inclusion is much larger than its diameter, € > d,
the surroundings yield elastically in the transversal direc-
tions, ef; = €3, # 0, but virtually prevent any extension
of the inclusion in the longitudinal direction, e{3 — 0. For
sufficiently high temperatures, the shear stress in the inclu-
sion corresponding to the difference elcl‘zz - 63C3 will relax
and in amorphous materials the increment of shear strain in
the transformation strain associated with this stress relax-
ation can freeze-in. (It can be shown that this holds even
for thermal spikes penetrating a whole film [21].)

We postulate here that anisotropic growth of amorphiz-
ing and amorphous materials being subject to intense elec-
tronic excitations is due to the efficient relaxation of shear
stresses within cylindrical thermal spike regions induced
by the thermal dilatation and to the freezing-in of the as-
sociated shear strain increments. The sequence of events
occurring during local heating and cooling is schemati-
cally illustrated in Fig. 2. Consider a piece of material
of total volume V in which a cylindrical region of time-
dependent volume V™ is subjected to a heating and cooling
history, 7'(¢). At the beginning, the stress free dilatation
a AT, which follows the temperature history, is coupled
with a constrained elastic shear strain € and a shear stress
&' = 2u&' = 2u&° within the spike where w is the shear
modulus of the material. Below a certain critical tempera-
ture 7* (“flow temperature”) which is equal to the melting
temperature for crystalline solids, 7* = T,,, shear stress re-
laxation is negligible. In this stage, the average strain over
the whole volume V is dilatational and given by (tre) =
(tre”)V*/V = a(AT)V*/V. Above the flow temperature,

T=To Tmax <T Tmax >T7

FIG. 2. Schematic illustration of the sequence of events
induced by a cylindrical thermal spike in an amorphous solid.
Below the flow temperature 7™ the strain is dilatational on the
average. Above T* the shear stress in the hot region relaxes
thus providing a certain shear strain increment. In a crystalline
solid this process would be reversed by recrystallization
whereas in an amorphous solid the relaxed state will freeze-
in upon cooling down of the spike.
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the local shear stress within the thus fluid region, &/,
begins to relax (and the pressure begins to equalize),
whereas shear stress relaxation in the cooler surround-
ings remains negligible. Upon (quasistatic) shear stress
relaxation, ; = 2u(&° — &7) — 0, a shear component in
the stress free strain, €7 = &€, is induced in the thermal
spike region which thus contributes an increment of strain,
A& = &TV*/V, to the total volume.

In crystalline materials, however, recrystallization re-
sults in an inversion of the liquid state relaxation process
and the initial state is essentially restored (ideal epitaxy).
Thus, in recrystallizing solids transient local melting is
associated with transient strain increments. In amorphous
materials, on the other hand, the relaxed hot region has
the same atomic structure as the stressed environment and
the strain increment associated with stress relaxation can
therefore freeze-in. Upon cooling down, the thermal ex-
pansion along the ion track is reversed but the strain in-
crement associated with the preceding stress relaxation
remains. In the stress free state, the quenched ion track
would represent a plastically deformed cylindrical rod of
reduced length and correspondingly enlarged cross sec-
tion. A track penetrating a thin film acts like a tensioned
string tight between the two surfaces of the film. The
stress in this region is compensated by counterstresses in
the surrounding regions. Thus, each track as a whole rep-
resents a ‘“shear strain unit.” In its region, the concen-
tration of atomic shear strain units introduced previously
is virtually 100% [4].

For pronounced thermal spikes (what this means is
briefly discussed below) it can be shown that the super-
heated (T = T*) and quickly relaxing core volume V*
is relatively well defined, meaning that the boundary be-
tween it and its surroundings is relatively sharp [21]. Ac-
cepting this in the present Letter, we can immediately
write the following simple relation for the shear strain
rate resulting from the perfect quenching to low irradia-
tion temperature of pronounced cylindrical spikes occur-
ing at high electronic stopping power:

€ = (&N (V'/Q)g = (&) (V'/Q)$S., (1)

where (&€7) is the average stress free shear strain in a
frozen thermal spike track, Q is the average heat per
spike, g is the average overall heat production density by
spikes, ¢ is the particle flux density, and S’ is the part
of the electronic stopping power put into “pronounced
spikes” in the atomic subsystem. The remaining tasks
are to relate the volume efficiency of the deposited heat
(V*/Q) to thermal properties of the material and the stress
free shear strain &7 to the thermally induced shear stress.

The boundary of V* is defined by the surface where
the maximum temperature equals the flow temperature 7.
Assuming a temperature independent specific heat we find
for a Gaussian heat distribution V* = Q/ep CAT*, where
p is the mass density, C is the specific heat per unit
mass, and AT" is the difference between the irradiation
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and the flow temperature. The determination of 7" is a
more complicated problem and beyond the scope of this
Letter. Here, we only note that its value is around the
melting temperature [21].

The relation between the stress free shear strain &
freezing-in below T* and the thermal expansionat 7 = T~
follows from the theory of elastic inhomogeneities in elas-
tically isotropic media as evaluated by Eshelby for ellip-
soidal elastic inclusions [20]. Taking the third coordinate
to be parallel to the cylinder axis we use (€7) = (&) for
the relaxed state and (&€) « (elcmz - €5) = Net1a) =
~3(€%)/2 = Aa(AT), where A = (1 + v)/(5 — 4v)is the
coupling coefficient between the corresponding strains de-
pending only upon Poisson’s ratio ». The temperature
is to be averaged at a given time over the region where
T = T* and over all the sizes assumed by such regions
during the cooling down process. For cylindrical heat dif-
fusion we find (AT) = 1.16a(T* — Ty). Using V*/Q =
[epC(T* — Tp)]"! we may then write Eq. (1) as

€ = €y = —é3/2 = (1.16/3e)[(1 + »)/(5 — 4v)]

X (a/pC)eS,. 2)
The temperature difference (and with this the flow tem-
perature) has canceled in this linear approximation since
it is contained both in the thermal expansion as well
as in the heat deposited in the spike. Note that an
approximately spherical displacement cascade would not
contribute to the deformation rate since in this case the
thermal expansion would not couple with a local shear
stress.

According to the approximation represented by Eq. (2)
the strain rate depends linearly upon ¢ and S/ without
any incubation fluence. This suggests to introduce a nor-
malized strain rate £ = ¢~ 'dé/dS! which depends only
on the material parameters v, «, and pC. For typical
thermal expansion coefficients around @ = 107 K~! and
high temperature specific heats of 3k per atom (k is Boltz-
mann’s constant) E is of the order of 3 X 107'3 m3/]J
in agreement with experimental values for high electronic
stopping powers (>5 keV/nm) and low irradiation tem-
peratures (<150 K) [4,5]. Figure 3 shows a correlation
between experimental and theoretical values of E for this
limiting case (assuming S, = S) for materials for which
the relevant data are sufficiently well known [22]. The
correlation is surprisingly good in view of the limited ac-
curacy of the data and appears to be universal. The fact
that in most cases Ecxp, < Eneor 1S probably due to long-
ranging electronic energy transport (S, < S,).

Equation (2) represents an asymptotic approximation
for pronounced cylindrical thermal spikes and low irradia-
tion temperatures where virtually all atomic motions are
frozen-in upon quenching, and its applicability is corre-
spondingly limited. A necessary condition for anisotropic
growth, for instance, is that the thermal spike around the
track of an ion forms a coherent cylindrical region and does
not break up in a “string of elastically independent perls.”
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FIG. 3. Correlation between experimental and theoretical val-
ues of the normalized strain rate E = ¢~ 'dé/dS, using for €
experimental results for high electronic stopping power S, and
low temperature, and Eq. (2) with S, = S,, respectively [22].
Line: ideal correlation. The point for FegsBs is uncertain be-
cause of magnetostriction effects.

The validity of Eq. (2) requires, in addition, that the maxi-
mum temperature in the atomic system is clearly above
the critical flow temperature (T,x = eT* for a cylindri-
cal Gaussian heat distribution). By these requirements, a
minimum electronic stopping power for anisotropic growth
is defined.

The validity of Eq. (2) is also limited by the condition
that the strain increment associated with stress relaxation
is efficiently frozen-in upon quenching. The extremely
fast heating and quenching processes may, however, re-
sult in a local reduction of the viscosity and of the corre-
sponding glass temperature in the thermal spike regions.
Around temperatures where the stress relaxation time in
the quenched spikes becomes comparable with the char-
acteristic time for the overlap of these regions, i.e., around
the glass temperature of the modified amorphous state,
the quenched-in strain increment will partially recover and
anisotropic growth will decrease with increasing tempera-
ture. We predict here that around this temperature growth
will partially recover upon homogenization of the inho-
mogeneous stress distribution. For anisotropic growth, an
incubation fluence will be required if the electronic stop-
ping power used is subcritical in the virgin amorphous
state but supercritical in the state modified by irradiation.

We predict that any incubation fluence will disappear at
sufficiently high electronic stopping powers.

We thank Dr. S. Klaumiinzer for encouraging discus-
sions and for providing the correlation shown in Fig. 3.
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