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Critical Behavior of the Structure Factor for Higher Harmonics in Density Wave Systems
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The structure factor S,(q) = (¥.(q);(q)) associated with fluctuations in the nth harmonic density
wave (DW) order parameter ¢, of a uniaxial system is affected by its bare q dependence, and by the

coupling Re(y; ¢1).

The latter involves correlations in the secondary order parameter ¢, characterized

by a correlation length &, = £,0[(T — T.)/T.]™*, with the same XY model exponent v for all n, and
decaying as ¢~ ?~™) for large ¢q. For n > 1, 5, is large. The ratio X, = (&,0/&10)* is universal, and
X, = €/20 — €2/100 + O(€®) in d = 4 — €. This naturally explains previously puzzling experimental

results for S, at a nematic—smectic-A, transition.
parameter correlations.

PACS numbers: 64.70.Md, 61.30. — v, 64.60.Fr

The order parameter of density waves (DW) in a uni-
axial system is characterized by the complex amplitude

| = x + iy, determined by the contribution Re(ie90?)
to the density modulation. Therefore, the critical behav-
ior associated with the order parameter is described by
the XY model universality class [1]. A simple example
of such behavior is provided by the smectic-A phase
of thermotropic liquid crystals [2]. Other examples
include charge density wave systems, spin density wave
systems, and rare earth magnets. Recently, there has
been considerable interest in the critical behavior of
higher harmonics, associated with the contributions
Re (ifr,e/97%) to the density modulation. Theoretically, the
exponents describing correlation functions of the order
parameters ¢, were derived from the XY model which
describes the leading order parameter ¢, [3], and the re-
sults were nicely confirmed by measurements of the bond
orientational order harmonics in hexatic liquid crystals
[4]. More recently, experiments on the nematic—smectic-
A, (N—Sm-A;) transition in the polar thermotropic
liquid crystal material 4'-n-heptyloxycarbonylphenyl-4’-
(4"-cyanobenzoyloxy) benzoate (7APCBB) succeeded
in observing the critical fluctuations associated with
the second harmonic of the DW order parameter [5].
Although these experiments confirmed the theoretical
predictions for the second harmonic susceptibility, x2,
fits of the second harmonic structure factor S>(q) by a
single Lorentzian shape yielded correlation lengths &),
and &, which seemed to scale very differently from their
first harmonic counterparts. Very close to the transition,
the former were at least an order of magnitude smaller
than the latter at the same temperatures. Attempts to
modify the Lorentzian shape failed to change these
conclusions.
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Similar predictions apply for other secondary order

These results were very surprising: A different scaling
of the correlation lengths &,’s for the different harmonics
would imply that the N—Sm-A, transition involves more
than one critical length scale and that it cannot be simply
described by the XY model. Furthermore, the fitted
exponents v, and v, severely violated the hyperscaling
relation 2v , + v = 2 — «, with no explanation. In the
present Letter we present several new theoretical results,
which clarify the critical behavior of higher harmonics in
DW and similar systems. Specifically, we predict that all
the harmonics are still dominated by the critical behavior
of the XY model, and therefore that 5,2, = X”g%, where
X, is a universal number. However, since X, may be
quite small, the structure factor of the nth harmonic, S,(q),
may be strongly influenced by its bare (noncritical) value.
Furthermore, since at the transition S, ~ ¢~ ", with large
values of 7,, deviations from the Lorentzian shape are
also important. These new theoretical results describe
the experimental results of Ref. [5], as well as some new
measurements [6].

We define the “local” nth harmonic order parameters as
the slowly varying complex functions ,(r) determining
the density

p(r) = po + Re D i, (r)expligonz). (1)

n=1

In the most general case, one should treat all the ¢,’s as
competing order parameters. In the absence of couplings,
each ¢, would undergo a separate XY-like phase transi-
tion, at a temperature 7, described by a free energy

1
3{" = fddr{irn()[llpnlz + §ﬁnb|V“¢/nl2
+ é—inblvl(/jlllz] + u:z"//11|4}' (2)

© 1995 The American Physical Society



VOLUME 74, NUMBER 25

PHYSICAL REVIEW LETTERS

19 JUNE 1995

We must also take into account the coupling terms

-’H;z,int = :“nfddr(w]n'p: + 1/11*"%) 3)

The correlation functions of the secondary order parame-
ters, ¢,’s with n > 1, can, in principle, be derived from
Egs. (2) and (3).

Assuming 7T, to be far enough below T, one has a
transition at 7. = T, with the leading two component
order parameter ;. Near this transition, we can neglect
the self-interaction of the ¢,’s and set u, = 0 in Eq. (2).
Thus the ¢,’s for n > 1 can be treated in the harmonic
approximation and we can solve the partition function for
¢, exactly in terms of the correlation functions of . For
example, the average density modulation with the wave
vector nqoZ is determined by

Wn = <wn> = ,U«anb<'//1">, (4)

where x,, = 1/r, is the bare susceptibility for the nth
harmonic. Since y,;, is not singular at T, the singular-
ity comes only from ({) « |t|?, where t = (T — T.)/T.,,
Bn=2— a — ¢, and ¢, is the crossover exponent as-
sociated with nth order anisotropy near the rotationally
invariant XY model fixed point [3]. Specifically, ¢, is the
crossover exponent for a uniaxial anisotropy term, pro-
portional to Re(4{) = x> — y2. Indeed, the experiments
on bond orientational harmonics confirmed these predic-
tions [4].

The above theory can now be extended to the structure
factor [7,8]

Sn(q) = (l,[/n((I)lﬂ;(Q)} = th(‘]) + /Lﬁsnb(q)zsn s (5)

where ¢, (q) is the Fourier trar}(sfgrm of ¢, (r), and
BL Xnb

th(q) I+ gﬁanﬁ + ‘fiani

is the bare nth harmonic structure factor. Here, S, =
i (q)yi"(q)) has to be calculated with the XY model
Hamiltonian #; [9,10]. Asymptotically close to T, and
for very small q, S,,(q) is practically temperature inde-
pendent, and the divergent part of S, is proportional to S,,,
which we calculate next. However, the experimental data
usually extend over a range of momenta q in which the g
dependence of S,, cannot be ignored, as we show in our
discussion of these data below. This fact may be associ-
ated with the physical nature of the polar material, where
the smectic-A, phase may be close to the transition into
the smectic-A, phase.

We next discuss the correlation function S,(q). Since
this function is dominated by the critical behavior of
the XY model represented by H,, we expect it to
have the asymptotic scaling form S,(q) = x.fa.(g&1),
where y, ~ |t|77, with —y, =2 — a — 2¢, [3,5], and
fn is a universal scaling function [11]. For x <1,
fn(x) may be expanded in powers of x, and thus be
approximated by a Lorentzian that is f,(x) = 1/[1 +
X,x? + O(x*)], and X,, is a universal amplitude ratio [11].
Rewriting S, = x,/[1 + £2¢® + ---], this yields &2 =

(6)

X, & = X, &5lt]72, that is, all the harmonic correlation
lengths scale with the same XY model correlation length
exponent v, but with different amplitudes. The ratios
of these amplitudes, X,, are universal. Indeed, our e-
expansion calculations described below confirm these
expectations. In addition, these expansions show that X,
can be small compared to unity, causing the q dependence
of §, to become dominant only very close to T.. For
x> 1, fulx) ~x @™ with2 — 5, = v,/v. Forn >
1, n, is quite large, and we expect significant deviations
from the Lorentzian shape at large x. To approximate the
crossover between these limits, we shall follow Fisher and
Burford [12] and write
B (1 + A,xH)m/?
IO T TR A oe
Our last theoretical step is the explicit calculation of 35,
in d = 4 — e dimensions. This part is somewhat techni-
cal, and the unmotivated reader can easily skip this para-
graph and move on to Eq. (10). It is easy to check that
3, is proportional to ((x* — y)(@x2 — y?)(—q)) [13].
Technically, it is convenient to shift the bare parameter
rio in Eq. (2), and replace it by the true inverse suscepti-
bility r = 1/x; ~ |t|"" [14]. Also, it is convenient to do
the calculations for the isotropic case (&, = &€ 1.5) and
to replace the sharp Brillouin zone cutoff A by a smooth
one, replacing the propagator 1/(r + ¢%) by G(r,q) =
1/(r + ¢>) — 1/(A? + ¢%). Expanding now in powers
of uy, this yields 8, ~ Q — 8u; Q2 + O(u}), where Q =
@2m)~¢ [d¥p G(r,p)G(r,p + q). An explicit calculation
at small g (with A = 1) now gives (to all orders in €)

Q = Cle){r <1 — €/2) — (1 + €/2) + O(r)

+ eq’[(e —2/24)r "> + 0] + 0(gM}, (8)
where the factor C is C(e) = Kym/2 sin(me/2) =
1/24779/271T(d /2) sin(sre/2). Expanding in powers of e,
and setting u; at its fixed point value Kd'le/40, we end
up with

)

1 1
S, ~ 1+ 5(1 — z€)lnr — Zze In’ r

2

q
+ R — — —
12r(l ze — ze Inr), )

where z = 3/10. Exponentiating in e (and taking out
a constant of order 1/€), this can be matched with
Sy ~ r /M /(1 + bg?/r¥/7), where y)/y| = z€ —
6€2/100 + O(€?), 2v/y, =1 + O(€?), and b = ze(l —
€/5)/6 + O(€®). Since to order € we have & = 1/r,
this confirms our prediction that &, scales with the
same exponent as ¢;, and we identify X, = b =
€/20 — €2/100 + O(€’) = 0.04 for € = 1. We have
also calculated the € expansion for the universal coeffi-
cients of higher powers of £,¢, and they all turn out to
be very small [15]. In summary of this part, we can now

write
$() = ksTxal1 + Ay(ghiat + €242
2 - k]
1+ (X2 + Aoma/2)(Efaf + €5147)

(10)
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with y, ~ |t|772. Equations (5), (6), and (10) form our
theoretical predictions, to be compared with experimental
data below. At this stage A, must be determined from
experiment.

All of these results can be easily generalized to other
secondary order parameters. If an order parameter i,,
couples to some combination of the (primary) order pa-
rameter components, which involves a sum over products
of m factors of these components, like x;x;---x,, then
the structure factor S,, = (¢¥.(q)¥, (q)) is also given
by equations similar to Egs. (5), (6), and (7), and one
should expect a universal ratio X, = (£,/€)%. For
example, energy-energy correlations involve the correla-
tion function Sz = (J¢|*(q)|¢|*(—q)), and a calculation
similar to the one presented above for the n-component
Heisenberg-like model yields Xg = (4 — n)e/12(n +
8) — (n + 2)(13n + 44)€?/12(n + 8)> + O(€?). Similar
results apply for elastic degrees of freedom, where the
components of the elastic strain e,g couple to xq,xg,
etc. [15].

As noted earlier, the above theoretical developments
were stimulated by recent experiments on the second
harmonic critical fluctuations at the N —Sm-A, transition
in the polar thermotropic liquid crystal material 7APCBB.
In light of this new theory we have reanalyzed the data
of Ref. [5], using Eq. (§). In addition, new experiments
have been carried out, extending the data out to t = 1072
[6]. We first noticed that the data around ¢ ~ 1072 are
fitted excellently by a simple Lorentzian around 2qoZ,
with correlation lengths which show little temperature
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Fig. 1. (a) Longitudinal x-ray scans through the 2g, peaks
in 7APCBB at various reduced temperatures, t = (T — T.)/T..
(b) Corresponding transverse x-ray scans. For clarity, each
scan is shifted by 10 counts/s in intensity. The solid lines
are the results of least squares fits by Eq. (5), as explained
in the text, convoluted with the instrumental resolution. The
dashed lines correspond to the contributions from the second
term of Eq. (5). The data at + = 1.0 X 1072 (and at eight lower
temperatures) were taken with a lower resolution and then
normalized to match the intensity of the earlier measurements
in the overlap region.
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dependence. We interpret this by assuming that far away
from the transition Eq. (5) is dominated by the first term
that is by the bare structure factor. We have thus fitted
S, for scans at + = 1072 with Eq. (6), and found the
values &), = 80 A and Eip =11 A. We have also set
the amplitude y,, to the value found by these fits. A
representative fit is shown in the lower part of Fig. 1.
Having set S,,(q) at these values for all temperatures,
we have also fixed X, at its e-expansion value of 0.04,
my at 2 — yy/v = 1.5, and &), and &, at their values
determined from S,(q) at each temperature (shown in
Fig. 2). Using Eq. (10) in Eq. (5), we have then fitted
the structure factor S, for 107> < ¢ < 1074, close to T.,
and found good fits for A, = 0.01. At these temperatures,
S, is dominated by the second term in Eq. (5) (see top of
Fig. 1). Setting A, = 0.01 for all T, we were left at each
temperature with the single adjustable parameter w,yx».
Finally, we fitted S,(q) at each temperature, and found the
value of this parameter. As can be seen from Fig. 1, the
fits to both the transverse and longitudinal scans over the
complete temperature range from ¢t ~ 1072 to t ~ 1077
are very good, comparable in quality to the original single
Lorentzian fits reported in Ref. [S]. This gives strong
support to the above theory. The critical second harmonic
susceptibility so obtained is also shown in Fig. 2. Fits
by a single power law give y, = 0.44 = 0.1, again in
agreement with the theoretical prediction y, = 0.32 +
0.04 [3].

Clearly, this new theory is completely consistent with
the experimental data on the second harmonic critical fluc-

10® . . — 10*

(spun -quo) X

@,
'Io..‘.
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10! . ' 40
1073 107 1073 1072
(T-Te)/Te

Fig. 2. The susceptibility x, for the second harmonic at 2¢gg
in the nematic phase of 7JAPCBB. The solid line shows a
single power law with the exponent 0.44. Also shown are data
for the longitudinal and transverse correlation lengths for the
first harmonic, &), and &,,, respectively, with the XY model
exponent » = 0.669. The eight points farthest from 7, are
additional data taken on the same sample at a later date and
normalized to match the intensity of the earlier data [6].
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tuations in 7APCBB, including the e-expansion estimate
for X,. Proving uniqueness as well as further optimiza-
tion of the parameters would require a detailed theoretical
expression replacing our approximate Eq. (10), as well as
more precise experimental data. It would be most valu-
able to search for similar effects in other systems with
XY-like DW ordering, and in systems exhibiting critical
fluctuations in other secondary order parameters. As seen
from our Egs. (4) and (5), the chances to observe higher
harmonics are increased when the couplings among the
harmonics, represented by the coupling coefficients u,,
are strong, and when the bare susceptibilities x,, are
large, that is, the T, s are not too far from each other.
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