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We report experimental results for Rayleigh-Bénard convection of a fluid (CO,) in a cylindrical cell
with radius-to-height ratio 40 and rotated about a vertical axis. Near the critical rotation frequency

for the Kiippers-Lortz instability and for small €

the correlation length ¢ of the pattern dynamics.

AT/AT. — 1, we measured the frequency w, and
They could be fit by power laws in € only when

exponent values much smaller than those predicted from amplitude equations were used. Alternately,
the predicted exponents could be retained if the threshold were shifted to negative values of e, thus

yielding finite w, and & at onset.

PACS numbers: 47.20.-k, 47.27.—i, 47.32.—y

Spatiotemporal chaos in physical systems presents one
of the exciting challenges in nonlinear science today [1].
The combination of spatial and temporal degrees of free-
dom has made such states extremely hard to characterize,
both experimentally and theoretically. Often the experi-
ments are possible only in regions difficult for theory to
address, or theoretical models have no close experimental
realizations. One system that seems particularly amenable
to overcoming both of these problems is the Kiippers-Lortz
(KL) unstable state [2,3] in rotating Rayleigh-Bénard con-
vection. This state, characterized by switching of local
roll orientation by approximately 60°, has the attractive
feature that it appears immediately at the onset of convec-
tion for arbitrarily small amplitudes provided the dimen-
sionless rotation rate () is sufficiently large. This feature
should make it theoretically more tractable than most other
systems with spatiotemporal chaos since weakly nonlinear
theory in the form of amplitude equations would be ex-
pected to be applicable. In addition, as a result of the lo-
cal roll switching through a characteristic angle, one might
expect this system to be in some sense somewhat more or-
dered than general spaitotemporal chaos.

An early theoretical description of the dynamics of the
KL state by Busse and Heikes (BH) [4] was in terms
of three coupled Landau-like amplitude equations in the
rotating frame, corresponding to three modes with wave
vectors advanced 60° with respect to each other in the
direction of rotation. This model captured certain ele-
ments of KL convection. However, experiments [S—7]
showed complex evolution of spatial domains, implying
that the simple HB model was incomplete in an impor-
tant way and that spatial effects needed to be incorporated
in the theory. This was done by several authors [8—11],
who added spatial gradient terms to the HB model and
thus obtained three coupled real Ginzburg-Landau equa-
tions. They also developed generalized Swift-Hohenberg
equations for the rotating convection problem. This the-
oretical work provided important predictions about the
scaling of the switching time and the spatial domain size
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of the Kiipper-Lortz unstable state. The amplitude equa-
tions predict that the characteristic time and spatial scales
should vary as e ! and e7'/2, respectively. Here e =
AT /AT, — 1. These predictions are consistent with the
generalized Swift-Hohenberg simulations [11], although
the amount of simulation data seem to be insufficient at
this time to infer precise exponents.

From an experimental perspective, no investigations
have probed quantitatively length and time scales close
to onset in large cells where intrinsic behavior unimpeded
by the sidewalls might be expected. The results of Heikes
and Busse [5,12] using shadowgraph visualization rather
far from onset (¢ > 0.5) indicated an approximate scaling
for the time scale of e %4, No scaling for the length
was presented in that work. A later study by Niemela
and Donnelly [13] in a cryogenic fluid and a cell of
modest aspect ratio (radius/height) I" = 10 yielded a
characteristic time which scaled as e %3. But as they had
no visualization capabilities and thus could not determine
the basic spatial state, the interpretation of this result is
uncertain because other sources of time dependence such
as the skewed-varicose instability are known to operate
at low Prandtl number [14], and because for I' as small
as 10 it is known that domains are nucleated primarily at
the sidewalls [15] rather than forming spontaneously in
the cell interior. Thus, in our view the scaling of time
near onset for the Kiippers-Lortz instability has not been
determined unambiguously, and nothing is known from
experiment about the scaling of length.

We report on experimental characterizations of com-
plex spatiotemporal dynamics in the Kiippers-Lortz un-
stable region of Rayleigh-Bénard convection in a large
aspect ratio cell (I' = 40) close to onset (e = 0.2). We
measured the convective heat transport, the averaged am-
plitude of the convective temperature field as reflected
in the shadowgraph signal, the average switching angle
Ok, a correlation length (in units of d), and the aver-
age frequency w, (in units of 7!, where 7, = d*/k is
the vertical thermal diffusion time and « is the thermal
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diffusivity) as a function of e for different dimensionless
rotation rates Q) = Qpd?/v. Here Q) is the angular rota-
tion speed in rad/s, d is the cell height, and » is the kine-
matic viscosity. As had been found [14] for Q = 0, for
small € the convective temperature amplitude increased as
€!/? and the convective heat current varied as €. This is as
expected for a forward bifurcation and in agreement with
the amplitude equations which have been proposed for the
rotating system. The switching angle O, in good agree-
ment with predictions [3], was 60° = 1° very near onset
and decreased slightly with increasing e. We found, how-
ever, that the e dependence of w, was not consistent with
the theoretically predicted € ~! scaling for the time scale of
Kiippers-Lortz dynamics. The data were consistent with
two possible scalings, either a power-law dependence with
an exponent approximately equal to 0.6 or a functional
form that implies a finite frequency at € = 0. Similarly,
the correlation length, predicted to vary as € 172, had ei-
ther a power-law scaling with an exponent near 0.17 or
again a form with a finite size at onset. These results
indicate that the amplitude equations which have been
proposed cannot explain quantitatively the Kiippers-Lortz
dynamics in our physical experiment. Our data provide
important constraints on theoretical models and will, we
hope, provoke new efforts to understand this important
nonlinear system.

The experimental apparatus was described in detail
elsewhere [14,16]. The cell bottom was an aluminum
plate with a mirror finish, and the top was an optically flat
sapphire window. The temperature of the bottom plate
was measured with thermistors embedded in it, and a film
heater, glued to the bottom of the lower plate, provided the
heat current. The circular sidewalls were made of three
layers of 0.34 mm thick cardboard paper with a straight
vertical edge. The height of the cell, slightly uncertain
because of an in siru adjustment of the cell flatness to
*2 um [17], was d = 1.06 £ 0.0l mm. The cell was
filled with CO, at 32 bars at a top-plate temperature of
33.7°C. This sample had a Prandtl number o = v/k =
0.98 and r, = 4.8 s. Convection patterns were imaged
using optical shadowgraph and digital signal processing
techniques. The onset of convection was determined
both from the convected heat flux and from the intensity
of the shadowgraph images. Over the range 0 < Q <
22, we found 1.49 < AT, < 2.19. In all cases, the two
determinations agreed to within 0.005AT, or better.

The data for the dynamics of the patterns were extracted
from very many (about 100 000) shadowgraph images ob-
tained for € < 0.2 and for 12 < Q) =< 22. Representa-
tive examples for small € and ) = 17.6,154 and 12.1
are shown in Figs. 1(a), 1(e), and 1(g), respectively. The
range of () is set to span the theoretically predicted [18]
critical rotation frequency . = 13 for o = 1. The range
of €, on the other hand, was constrained on the high end by
secondary instabilities, primarily by the skewed-varicose
instability. The pattern dynamics consisted mostly of a
switching of roll orientations through O, and led to

FIG. 1. Shadowgraph images /(r) of convection patterns and
their analysis. (a) I(r) for ) = 17.6 and € = 0.024. (b) Grey-
scale image of the modulus of the Fourier transform F(k)
of I(r) shown in (a) (dark areas represent a large modulus).
(c) F(O,r) [the average over k of F(k)] as a function of the
azimuthal angle ® of k (horizontal axis) and of time (vertical
axis) in units of 7,. Bright areas are high values of F(O,1).
The image covers 0 = ® = 77 and 0 < r = 300 (the actual
run was much longer). (d) The angle-time autocorrelation
function C(0,t) of F(®,r). The origin is at the center of the
image. The angle (time) is shown in the horizontal (vertical)
direction. The figure covers the range —7/2 = ® = 7 /2 and
—318 =t =318. (e) I(r) for Q = 1.54 and € = 0.054. (f)
C(0,1¢) as in (d), but for the conditions of image (e). The figure
covers the range —265 = r = 265. (g) I(r) for Q& = 12.1 and
€ = 0.058. (h) C(0,1) as in (d), but for the conditions of image
(g). The figure covers the range —1060 = ¢ =< 1060.
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significant spatial and temporal correlations of these orien-
tations. Thus one could use time sequences of the modulus
of the Fourier transform F (K, ¢) to determine the temporal
evolution of the dominant orientations. We determined
F(k) from the central parts of the images within 71% of
the sample radius, using a Hanning window as described
elsewhere [17]. The results thus are representative of the
patterns in the cell interior well away from the walls [19].
As an example, F(k) for the image in Fig. 1(a) is shown
in Fig. 1(b). By averaging the square of F(k) over the
angular orientation ® of k, we obtained F(®) as a func-
tion of the angular orientation of k. It typically showed
three dominant orientations of rolls corresponding to the
60° Kiippers-Lortz switching angle. By displaying many
determinations of F(®) as a function of time one above
the other, we constructed angle-time plots such as the one
shown in Fig. 1(c) where time increases in the vertical di-
rection and where the horizontal extent covers an angular
range equal to 7 [the image in Fig. 1(a) yielded the top line
of that plot, and only a small fraction of the actual run is
shown]. Finally, we calculated the angle-time correlation
function C(0, ) of F(®,¢). For the conditions of Fig. 1(a)
and for a time interval much shorter than the actual run,
it is shown in Fig. 1(d). Here the equal-time, equal-angle
point is in the center of the figure, and the horizontal ® axis
runs from — /2 to 7 /2. Similar representation of C(®, )
for the conditions of the images in Figs. 1(e) and 1(g) are

100/£2
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€
FIG. 2. (a) 100/£? and (b) w, vs € for different Q. Solid
squares: ) = 17.6. Open squares: ) = 16.5. Solid circles:
Q = 14.3. Open circles: ) = 12.6. The solid lines are fits by

polynomials in e as described in the text. The crosses in (a)
are of nearly straight parallel rolls at {3 = 0.
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shown in Figs. 1(f) and 1(h), respectively. In the correla-
tion function one can identify the switching angle O as
the angular distance between the bright (high-correlation)
angular positions. The switching frequency w, is given
by the inverse of the slope of the dominant bright lines in
C(0,1).

At small € and on the basis of the amplitude equations
which have been proposed, we expect that w, x &' and
that £ « €~!/2. Thus, we show in Fig. 2 the results for
1/£% and w, as a function of € for four representative
rotation frequencies (). For the correlation length, we
also show, as crosses, some results obtained [17] for Q =
0. Without rotation and over this € range, the pattern
consists of nearly straight parallel rolls [17]. Thus, the
crosses reflect primarily the finite nature of the sample.
Since they correspond to a length which is considerably
larger than the lengths measured with rotation, it seems
safe to conclude that finite-size effects in the analysis
algorithm are not important. If the expected power laws
were valid up to € = 0.2, the data should fall on straight
lines. They show, however, significant curvature even for
modest €. In addition, any reasonable extrapolation to
€ = 0 leads to a finite value of w, and ¢ at onset. Thus
the data were fitted by the functions

¢ = && 21 + Dee),
w, = waOE(l + Dmg),

with € = € + €p. The results are shown by the solid lines
in Fig. 2. The fits gave distinctly negative values of €.
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FIG. 3.
and rotation frequencies () are as in Fig. 2.

Log-log plots of (a) ¢ and (b) w, vs €. The symbols
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The conclusion of this interpretation of the data, which
retained the conventional exponents, is that the length and
time scales at onset are finite.

Since the above interpretation of the data leads to
conclusions which are contrary to what is expected, we
search for an alternative explanation of the measurements.
Figure 3 shows ¢ and w, as functions of € on logarithmic
scales. The data for w, fall on straight lines, and thus can
be represented well by the simple power law

Wy = wu0€”.
The data for ¢ show some curvature, but as shown by the
solid lines, the power law with a higher-order correction
term

& = &e V(1 + Dge)
fits them well. This interpretation leads to a correlation
length which diverges and a frequency which vanishes at
onset, as was expected from the theory. The exponents,
however, differ substantially from the expected values,
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FIG. 4. Top panel: power-law exponents vs ) for ¢ (solid
circles) and w, (open circles). The other three panels give the
leading correlation-length amplitude &, the amplitude D, of
the correction term of the correlation length, and the leading
amplitude w,o of w,.

as shown in the top panel of Fig. 4. There the open
circles are for w,, and give x = 0.6. The solid circles
give y = 0.17 for the exponent of £. We see that this
interpretation of the measurements is also contrary to
theoretical expectations.

We conclude that the amplitude equations in their
present form (which give & « e /2 and w, « €') are
not consistent with the experimental measurements. It
would be of interest to carry out more detailed numerical
work using generalized Swift-Hohenberg equations with
realistic sidewall boundaries in order to see whether
the time and length scales of the experiment can be
reproduced; despite eliminating commonly considered
finite size effects as the explanation for our results,
we cannot rule out more subtle influences of sidewall
boundaries.
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FIG. 1. Shadowgraph images /(r) of convection patterns and
their analysis. (a) /(r) for ) = 17.6 and € = 0.024. (b) Grey-
scale image of the modulus of the Fourier transform F(k)
of I(r) shown in (a) (dark areas represent a large modulus).
(¢) F(O,1) [the average over k of F(k)] as a function of the
azimuthal angle © of k (horizontal axis) and of time (vertical
axis) in units of 7,. Bright areas are high values of F(©,1).
The image covers 0 = ©@ = 7 and 0 = = 300 (the actual
run was much longer). (d) The angle-time autocorrelation
function C(©,r) of F(®,r). The origin is at the center of the
image. The angle (time) is shown in the horizontal (vertical)
direction. The figure covers the range —7/2 = ©® = 7/2 and
=318 =1 = 318. (e) I(r) for {1 = 1.54 and € = 0.054. (f)
C(0,1) as in (d), but for the conditions of image (e). The figure
covers the range —265 = 1 = 265. (g) I(r) for 2 = 12.1 and
€ = 0.058. (h) C(©.1) as in (d), but for the conditions of image
(g). The figure covers the range — 1060 = 1 = 1060.



