
VOLUME 74, NUMBER 25 PHYSICAL REVIEW LETTERS 19 JUNE 1995

Forced Ra@leigh Experiment in a Magnetic Fluid
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A spatial modulation of colloidal concentration of nanoscopic magnetic particles is written in a
ferroAuid solution inside the fringes of a forced Rayleigh scattering device. The relaxation time of this
transient grating is inversely proportional to the square of the characteristic wave vector and thus to the
cooperative diffusion coefficient of particles. If an external magnetic field is applied in the plane of the
fringes and perpendicularly to these ones, the experimental diffusion coefficient increases, due to local
magnetic field gradients in the spatially inhomogeneous magnetic medium.

PACS numbers: 42.25.Fx, 42.65.Es, 66.90.+r, 75.50.Mm

Forced Rayleigh scattering (FRS) is a powerful tech-
nique to study heat and mass transfers in liquids [1]. In
pioneering FRS experiments [2—4], a holographic grating
of spacing A is created by a pair of crossed interfering laser
beams in the studied medium, either a solid or a liquid. A
thermal phase grating is thus generated in the absorbing
medium and the thermal diffusivity is determined through
the characteristic time ~q of relaxation of the transient
modulation: typically with an interfringe A = 10 p, m, ~z is
=1 ILs for ruby and =100 p, s for glycerine or methanol [4].
On one hand, with a similar technique, a massic diffusion
can be measured in a polymeric solution [5,6] or in a col-
loidal solution [7] labeling some macromolecules or some
colloidal particles with a photochromic probe and writing
a spatial modulation of concentration of photoexcited en-
tities in the solution. On the other hand, it is possible via
optical forces to induce spatial periodic patterns [8] inside
suspensions of p, m-sized latexes or via osmotic pressure
effects to induce phase separation and p, m-droplet nucle-
ation in microemulsions [9].

Synthesis and study of complex magnetic media, based
on nanoscale magnetic particles, is an up to date [10—15]
and promising field of research which has expanded re-
cently because of its numerous technological applications
[16]. In the present work, we are dealing with a mag-
netic liquid (ML) [17] which is a colloidal suspension of
nm-sized magnetic particles in a liquid carrier. If the con-
ditions of colloidal stability of ML have been extensively
studied [18—20], massic diffusion coefficients of particles
have been seldom measured [21] and only by quasielas-
tic light scattering (QLS) in the very dilute regime. Here,
we show that, thanks to a FRS technique, we are able to
measure this diffusion coefficient in a ML of volume frac-
tion 10% and to study the effect of the specific external
parameter of ML: an applied magnetic field.

We observe that our FRS writing grating induces in-
side the ML a spatial modulation of concentration with-
out a tracer. The writing process which is complex,
mixing both electrostrictive and thermophoretic effects, is
not studied here in detail and will be contained in a forth-

coming paper. This work deals with the relaxation of the
concentration grating. We verify experimentally that it is
a pure diffusive process related to a mass transfer of par-
ticles inside a monophasic colloid. In this experiment, for
the first time with a FRS technique, we measure a cooper-
ative mass diffusion coefficient in a colloid: by opposition
to the self-diffusion coefficient obtained with solutions
of a few photochromic labeled macromolecules [5], very
similar to what is measured with a standard quasielas-
tic light scattering experiment [21], but in a much higher
range of colloidal concentrations. Our colloid is a mag-
netic one: We show experimentally that, if an external
magnetic field is applied perpendicularly to the fringes of
the grating (and in the grating plane), the measured diffu-
sion coefficient is an increasing function of the field. This
effect is explained in terms of local magnetic field gradi-
ents, in this spatially modulated magnetic material.

The experiment is performed with an acidic ionic
ferrofiuid ( p H = 2), chemically synthesized through
Massart's method [22]. It is an aqueous colloidal solu-
tion of maghemite (y-Fe203) particles, each bearing a
negative superficial density of charges, roughly equal to
0.2 C/m [23] which allows an electrostatic stabilization
of the solution. The volume fraction of particles is
4 = 10% as measured by chemical titration of iron, the
magnetic volume fraction being slightly smaller —=9%.
Measurements of magnetic susceptibility and magnetic
birefringence relaxation on a dilute sample lead for the
magnetic particles to a magnetic radius [24] RM = 6 nm
(using bulk magnetization m,. = 4 X 105 A/m) and to
an hydrodynamic radius [25] RH = 15 nm, larger than
RM. The colloidal stability [18] is checked through
two kinds of experiments: small angle x-ray scattering
(SAXS) [26] in zero magnetic field (Laboratoire pour
1'Utilisation du Rayonnement Electromagnetique, Orsay)
and optical diffraction [27] under magnetic fields up to
160 kA/m. SAXS spectra obtained in zero field are
very similar to those of Ref. [28] obtained by small angle
neutron scattering on comparable samples. An order of
magnitude of thermodynamic interparticle interactions
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can thus be derived (in zero field, at room temperature
and up to &0 = 8%): 8[4(Bp(H = 0)/B4)]/BC& =—20kT
[p, (H = 0) is the chemical potential of the solution in
zero field, k is the Boltzmann constant, and T is the
temperature]. In zero magnetic field, a local increase of
temperature or of volume fraction of magnetic particles,
at constant concentration of counterions (here NH3 ), is
unable [18,23] to induce a phase separation in the colloid.

The sample is put in an optical cell, 10 p, m thick,
between the pole pieces of an electromagnet which
provides us with a uniform magnetic field, lying in the
plane of the cell, ranging from 0 to 160 kA/m. To
create a transient grating in the ferroAuid sample we
use a high peak power (0.2 MW), pulsed and frequency
doubled Nd:YAG laser (Ag = 0.53 p, m). The beam is
split in two parts of equal intensities. These two pump
beams intersect in the ferroAuid with a definite angle 0
building up a spatially periodic intensity distribution in
the sample I(x) = 2Ip(1 + cosqx), with q = 2'/A and
A = Ag/2 sin(0/2); A is the interfringe distance in the x
direction. Maximum average power is limited ((0.2 W)
to prevent the sample from being destroyed. A grating is
induced and its dynamics is probed through the first order
of the diffracted pattern of a continuous HeNe laser beam
of lower intensity (A„=0.63 p, m, 3 mW).

When the two green power-laser beams interfere for
a few seconds, a grating can be easily observed in the
colloidal solution with a red light working microscope:
a typical picture is given in Fig. 1(a). Nothing else but
a modulation of colloidal particle concentration could
give rise to such an absorption grating picture. However,
the presence of a superimposed index grating is not
excluded by this direct visual observation and it would
enhance the diffracted signal. If one of the two green
beams is switched off, the fringes smear out in a few
seconds: Typical variations of the first order diffraction
from the probing. red laser are presented in Fig. 1(b) as
a function of time. Experimentally, the relaxation of this
first order diffracted signal is a single exponential decay.
In Fig. 2(a), the inverse of its characteristic time ro is
plotted as a function of q, the square of the characteristic
wave vector, for various magnetic field strengths H
(H being perpendicular to the fringes). Within the
experimental error bars, 7-& is directly proportional to
q for any value of H. This direct proportionality probes
here the total lack of recombination processes [29,30] and
allows us to define an experimental diffusion coefficient:
D'"~ = (2rDq ) ', the detection being homodyne with
an incoherent background intensity less than 1% of the
coherent signal [6]. D'"i' accuracy ranges from 2% for
H = 0 to 5% for H = 120 kA/m. r& is of the order
of a few seconds which is much larger than the thermic
characteristic times of the problem: the thermal relaxation
nanoparticle/solvent =I ps and thermal relaxation of a
30 p, m grating = 1 ms.

All these points [absorption grating of Fig. 1(a), single
exponential relaxation process with 7.&' ~ q, and order
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FIG. l. (a) Direct picture of the concentration pattern with
A = 36 p, m. (b) Time dependence of the diffracted signal if
the writing grating is applied during =4 s. The dotted line is
the single exponential best fit of the intensity relaxation with
7D = 0.6 s [(a) and (b) both correspond to q2 = 3 X 10'o m 2].

of magnitude of the relaxation time] settle the fact that, in
this forced Rayleigh experiment, a concentration grating
of colloidal particles is induced and that, by measuring
the characteristic relaxation time of this pattern, we can
determine an effective massic diffusion coefficient of the
nanoscopic particles. To our knowledge this is the first
time that this effect has been reported in a colloid.

exp
In zero magnetic field we measure Do = 2.7 &&

10—i & m2 s-] This value is independent of the po-
larization direction of the probing laser and has to be
compared to the Stokes-Einstein diffusion coefficient:
Do = kT/fo = kT/6' rloRH = 1.4 X 10 '' m s ', fo
being the friction coefficient f(iIi) at volume fraction
4 = 0, go the carrier viscosity (here water), and RH the
hydrodynamic radius taken equal to the experimental value
obtained from birefringence relaxation measurements.
The discrepancy between Do and Do can be ascribed to
an effect of interparticle interactions inside the colloid.
For a finite volume fraction 4 of colloidal particles and in
the linear regime the generalized Stokes formula is

D (4) = 4 (aIJ„(H= 0)/a~Ii)/f(4)
= Dp[l + (~r —aI)iIi],

coefficients ~T and ~~ accounting, respectively, for ther-
modynamic and hydrodynamic interactions in the frame-
work of a hard sphere liquid [31] ~& = 6.55. Assuming
that this linear description is still valid at a 10% volume
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j, = —[4&/f(C&)][ay, (H = 0)/a4i]a&/ax

+ [4/j(4)]ppm, vL(g)aH/ax.

The particle concentration evolution is then given by

a4 /at = —(a[Dp(4)a4/ax])/ax

(2)

—a[4' ppm, VL($) (aH/ax)/f(4)]/ax, (3)

dicular to the fringes, the chemical potential p, depends
on both particle concentration and external field strength.
It can be written p, = p, (H = 0) + p, H [33].

In a first step we neglect local field effects (a pH, /a4i —=

0), and we approximate the magnetization of the colloid
by the Langevin formula M = 4m, L(g), where L(g) =
cotanh($) —g

' and g = ppm, VH/kT, pp being vac-
uum permeability and m, particle magnetization. Using
the Maxwell relation (ap/aH)q& = —ppV(aM/a4i)H, tile
particle diffusion Aux may be written

0.5—
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FIG. 2. (a) Plots of rp' as a function of q2 for various
applied fields H: D"P is the slope of the linear best fit
(k: H = 0 kA/m, De"& = 2.7 X 10 " m s ', : H = 28 kA/
m, D"t' = 4 X 10 " m s ', ~: H = 112 kA/m, D'"r = 5.4 X
10 " m2s '). (b) Reduced variations of De"r' (black dots) as a
function of applied field H compared to theoretical expressions
(4) (full line) and (5) (dotted line).

fraction Dp(4) = Dp implies trT = 16 very close to 20,
the experimental order of magnitude from Ref. [28].

If an external magnetic field is applied, the relaxation
time decreases [Fig. 2(a)], leading to an increase of the
experimental massic diffusion coefficient. In Fig. 2(b)
the variation of the ratio [D"i'(H) —Dp ]/Dp is plot-
ted versus H. In this magnetically stable colloid, the
expected effect of magnetic interparticle interactions
under field would be, in a mean-field description, a
decrease of D'"i'(H) because this interaction is attractive.
The observed D'"i'(H) increase effects the particles, via
dipolar interactions [32], of magnetic field gradients aris-

ing in this field geometry from the concentration grating
of magnetic particles. We propose later a theoretical
model accounting for the magnetic field dependence of
D"t'. Figure 2(b) presents a comparison between our
experimental data and this model.

Decoupling, because of their largely different time
scales, thermic and massic diffusion cruxes, the evolu-
tion of particle volume fraction is described in one di-
mension, by a4 /at = —aj /ax. The diffusion flux j,
is, according to nonequilibrium thermodynamics, equal to
j, = 4e(a p/ax)/f (—4) Th, ese two equ. ations allow a de-
termination of the diffusion coefficient in the presence of
field. In our experiment we use a magnetic field perpen-
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D~( = Dp(4i) + y[kT/f (4 )]

x P.'(g, )/[I + y(1 —2A)L'(g, )]
—~L'(r. )/[I —~yL'(e, )]). (5)

where Dp(4e) is the Stokes diffusion coefficient of
Eq. (1). The magnetic field strength H is determined
from the Maxwell equation in the magnetostatic approxi-
mation a[H + m, @L($)]//ax = 0, leading to aH/ax as
a function of a4e/ax. Performing an expansion of Eq. (3)
in the limit of small variations of volume fractions, with
respect to the equilibrium one 4, we obtain a diffusion
coefficient D~~ of the particles along the field lines larger
than the thermal one and equal to

Dll = Dp(4~) + y[kT/f(4)]L'(g)/[1 + yL'(g)], (4)

L'(g) being the first derivative of L(g) and y the
reduced parameter of magnetic dipolar interaction,

y = ppm2V&b/kT —= 4.1, using the magnetic volume of
particles V = 4vrRM/3 as deduced from initial suscep-
tibility measurements and taking 4 = 9% equal to the
magnetic volume fraction, smaller than the colloidal vol-
ume fraction and deduced from saturation magnetization
measurements. In this approximation, D~~ appears as an
increasing function of g, thus of H and formula (4) ex-
presses the main effect of an external field perpendicular
to the magnetic fringes: It adds a driving force parallel
to the gradient of effective magnetic field. Reduced field
variations of D~~, as deduced from expression (4), are plot-
ted in Fig. 2(b), with kT/j(4e) equal to its experimental
value Dp(rIi)/(I + Kr4i): Dp /2. 6.

In fact, with such a large magnetic volume fraction,
the previous magnetic approximation is too rough, local
field effects are now taken in account together with an
effective field description of the magnetization of the
colloid [33],M = @m,L($,) with g, = g + AyL($, ) and
A the local mean-field factor (A = 0 in the noninteracting
limit, A =

3 in the classical Lorentz description [34]).
The magnetic part of the chemical potential is then p, H =
—kT ln(sinhg, /g, ) and expression (4) transforms in [35]
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In this mean-field description, the net supplementary
effect of magnetic interactions is a decrease of D~~ with
respect to expression (4); this small additional decrease
is the only existing effect on D,„~if the field is parallel
to the fringes [35]. The field dependence of theoretical
expression (5) is compared to experiments in Fig. 2(b)
using an adjusted value of A = 0.22 which could be
related to the shape of the magnetic particles.

In conclusion, in the present forced Rayleigh scatter-
ing experiment, performed with a magnetic colloid, a
mass transfer of particles is observed leading to the pe-
riodic spatial modulation of an absorbing grating. The
characteristic relaxation time of this pattern is directly
related to the cooperative diffusion coefficient of parti-
cles, similar to the quantity measured in a quasielastic
light scattering experiment. The applied magnetic field
modifies the characteristic times, as the mass transfer is
sensitive here to the local magnetic field gradients. QLS
and FRS lead to complementary results. To study mag-
netic colloids, the first technique is useful in the dilute
regime but is easily hindered by absorbtion and multi-
ple scattering at large concentrations. On the contrary,
FRS requires a good contrast of the fringes, concen-
trated ferroAuids: at least 4 = 5% with the present ex-
perimental setup. In the future, besides our next goal
which is a clear reading of the complex writing process,
such a FRS technique will be useful to study interpar-
ticle interactions: inside ionic ferrofluids as a function of
ionic strength near the phase separation onset and inside
any kind of ferrofluid as a function of applied magnetic
field in various geometries with respect to the fringes.
Moreover, recent numerical works [19,20] on these dipo-
lar (ferro)fluids open new questions about the existence
(under specific colloidal conditions: reducing interparticle
repulsion [19])of some dynamic internal structures such
as living magnetic polymers, linear or ring shaped. This
subject calls for further investigations of dynamic prop-
erties of such concentrated magnetic colloids: the present
FRS technique could be an efficient tool to this end.
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