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Self-Induced Transparency in Bragg Reflectors: Gap Solitons near Absorption Resonances
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We show that pulse transmission through near-resonant media embedded within periodic dielectric
structures can produce self-induced transparency (SIT) in the band gap of such structures. This SIT

constitutes a principally new type of gap soliton.
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Self-induced transparency (SIT), namely, solitary prop-
agation of electromagnetic (EM) pulse in near-resonant
media, irrespective of the carrier-frequency detuning from
resonance, is one of the most striking and important ef-
fects of nonlinear optics [1,2]. It reflects the essence of
driven two-level atom dynamics, which is described in
the soliton frame by a pendulum equation for the pulse
area 6 (the sine-Gordon equation). If the pulse duration
is much shorter than the transition (spontaneous-decay)
lifetime (74) and dephasing time (7,), and 6 is a multi-
ple of 27r, then pulse-area conservation gives rise to SIT,
corresponding to reemission of the absorbed radiation in
phase with the driving field.

One of the standard tacit requirements for SIT is
uniformity of the medium. Indeed, one would expect that
partial reflection of the field in a nonuniform, e.g., layered,
medium should destroy SIT, because the pulse area is
then split between the forward and backward (reflected)
waves and is no longer conserved for each wave. This
expectation seems to be supported by treatments of a
single thin resonant film [3] or a periodic array of such
films [4], which yield bistable (two-valued) transmission
of the incident pulse, because of the coupling of the
forward and backward waves. Should we then anticipate
severely hampered transmission through a medium whose
resonance lies in a reflective spectral domain (photonic
band gap) of a periodically layered structure (a Bragg
reflector)? In this Letter we show that, contrary to such
expectations, it is possible for the pulse to overcome the
band-gap reflection and produce SIT in a near-resonant
medium embedded in a Bragg reflector.

The predicted SIT propagation is a principally new type
of gap soliton, which does not obey any of the famil-
iar soliton equations, such as the nonlinear Schrodinger
equation (NLSE) or the sine-Gordon equation. Its spa-
tiotemporal form, intensity dependence, and transmission
mechanism are shown here to be quite unique. Never-
theless, it shares several common features with the exten-
sively studied gap solitons [5—8] or with ultrashort pulses
[9] in Kerr-nonlinear Bragg reflectors.

We consider the propagation of an EM pulse through a
medium consisting of two-level systems (TLS) embedded
within a one-dimensional periodic dielectric structure, e.g.,
a multilayered dielectric mirror. Our starting point is the
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Maxwell equation for the field E
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driven by the current of the total polarization P, = Py, +
P,1. The linear part of the polarization Py, = yuE is
characterized by a linear refractive index nj, = 611i£2 =
(1 + 47 xyn)"/? with fundamental period d, e, = €, +
> A€, cos(2mkz), where k = 7w/d and Ae, is the
variation of the mth harmonic of the dielectric index. The
nonlinear polarization P, is the near-resonant response of
the TLS.

We may, analogous to the theory of distributed feedback
lasers [10—12], decompose the total field and nonlinear po-
larization into forward (F) and back-reflected (B) compo-
nents

E(z,t) = [&c(z,t)eikZ + &5z, 0)e *]e 9! + cc.,
(2a)
Pui(z,1) = [Pr(z,1)e’™ + Py(z,t)e *]e 1@« + cc.,

(2b)

assuming that the carrier frequency w lies near the
center of the lowest fundamental band gap w,. = kc/ny,

where ng = 6(1)/2 The small detuning from the gap
center |w,. — w| < w will be considered as phase
modulation of the complex amplitude £r). Under the
weak-reflection assumption (|A€,| < €y) we may drop
spatially fast-varying components (varying on the scale
of a wavelength) of £ and P,;, and, consistently, m > 1
terms of €;,. We then obtain the following coupled-mode
equations for the Rabi frequencies corresponding to the
slow-varying field amplitudes, Qpp = ulpn)/i, where
M is the dipole moment of the TLS transition [12]:

(inio 582 + :;%:)QF(B) = iCK/n()QB(F) + T(,_z?F(B). 3)
Here and hereafter the upper (lower) sign corresponds
to the first (second) subscript. The first term on the
right hand side of (3) describes the forward-to-backward
wave coupling via Bragg reflection with characteristic
reflection (attenuation) length 1/, where k = kA€, /4€o.
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The second term is proportional to the TLS polarization
current, and 7.2 = 27w, u?0/ndhi is the inverse square
of the cooperative resonant absorption time 7., o being
the density of the TLS. Note that « is positive or negative
for TLS embedded in regions with the higher or lower
refractive index (Ae; > 0 or Ae; < 0), respectively.

In treatments of bidirectional field propagation in media
with arbitrary spatial distribution of near-resonant atoms
[13,14], the Bloch equations for the population inversion
w(z,t) and polarization P, are entangled in a fashion
which leads to an infinite hierarchy of equations for suc-
cessive spatial harmonics. The truncation of this hierar-
chy can only be justified by phenomenological arguments.
Here we avoid this complication by restricting the near-
resonant species distribution to thin layers (much thinner
than the resonant wavelength) with the same periodicity d
as the dielectric structure. Then the nonlinear polarization
envelopes may be decomposed as [4]

Prpy = D Pui(z;,08(z — zj)e . 4)
7

Here P, i(z;, ) is the nonlinear polarization of the TLS in
the jth layer (z; = jd). The Bloch equations then assume
the form

8tPnl(Zj,[) = W(zj,l) (QFeikZ] + QBefikz,-)
— i(wge — @12)Pni(z), 1), (5a)
1 . . o
Iw(z;,t) = — Epnl(zj’t) (Qre* + Qe k)
+ c.c., (Sb)

where w is the population inversion and w,. — w1, is the
detuning of the TLS resonance frequency w;, from the
gap center. The periodicity of the TLS positions which
satisfy the Bragg condition, i.e., exp(*2ikz;) = 1, yields
Pr = Pp = P in (4). Upon summing over all layers j,
the Bloch equations (5) can be written under the Bragg
condition in the following closed form, without resorting
to harmonic expansion:

9, P(z,1) = w(z,1) (Qp + Qp) — i(wge — w12)P(z,1),
(6a)
wl(z,t) = —%—[T*(z,t) QF + Qp) + cc]. (6b)

In an attempt to further simplify the Maxwell-Bloch
equations, we first convert the variables to the dimen-
sionless form 7 = t/7., { = noz/c7., N = k7., and § =
(wge — wi2)T.. We now rewrite Eqs. (3) and (6) for the
sum and difference of the forward and backward field
envelopes 24 = 7.(Qr + Qp) and 2 = 7.(Qr — Qp),
and obtain by simple manipulations

[ai - a}]& =29,P + i2nP — n*3,, (7a)

[92 — 3]s = —20,P — n*3_. (7b)

Although %, and 3_ now obey separate equations, they
are still coupled via 2, which satisfies the Bloch equations

0, P =w3, —idP, (8a)
dw=—5 (P, + PS). (8b)

We emphasize again the crucial role of the assumption
that the TLS layers are much thinner than a wavelength
and satisfy the Bragg condition. Without this assumption
we could not have obtained (7) and (8), which are closed
in 2 and w (in contrast to Refs. [13,14]).

Equations (7) and (8) cannot be reduced to any familiar
soliton equation. Our main idea is to try for the above
equations a phase-modulated 2 -soliton SIT solution

expli(al — A7)]
0 cosh[B(¢/u — 7))’

where A = (w — wg)7., Ap is the amplitude of the
solitary pulse, B its width, and u its group velocity
(normalized to ¢).

Substituting 9,7 from Eq. (8a) into Eq. (7a), we may
express P in terms of %, and the population inversion
w. Then, upon eliminating 7 and using Eq. (9), we
can integrate Eq. (8b) for the population inversion w,
obtaining

Sy =4 ©

_ A3(A — a/u) 1
2(6 — k) cosh’[B(¢/u — 7)]°

Using these explicit expressions for 7 and w in (7a) and
(8a), we reduce our system to a set of algebraic equations
for the coefficients «, A that determine the spatial and
temporal phase modulation, and the pulse width B as
functions of the velocity u. The soliton amplitude is then
found to satisfy |Ag| = 28, exactly as in the case of the
usual SIT [2]. This implies, by means of Eq. (9), that the
area under the X, envelope is 27.

Let us consider the most illustrative case, when the
atomic resonance is exactly at the center of the optical

(10)

w= —1

gap, & = 0. Then the solutions for the above parameters
are [15]
_ o 134 _om 1+
T T AT o (11a)
8u*(1 — u?) — n*(1 + u?)?
2 = Aol?/4 = . 11b
B> = Ao/ pTT—E (1)

In the frame moving with the group velocity of the
pulse, ¢’ = ¢ — ur, the temporal phase modulation will
be (e¢u — A)7, which is found from Eq. (11) to be equal
to —m7. Since 5 = k7. is the (dimensionless) gap width,
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this means that the frequency is detuned in the moving
frame exactly to the band-gap edge. The band-gap edge
corresponds (by definition) to a standing wave, whence
this result demonstrates that such a pulse is indeed a
soliton, which does not disperse in its group-velocity
frame.

The allowed range .of the solitary group velocities
may be determined from Eq. (11b) through the condition
B? > 0 for a given 7, as illustrated in Fig. 1. The same
condition implies || < 7max, Where

2 = 8u*(1 — u?)/(1 + u?)%. (12)

It follows from (12) that the condition for SIT is || < 1,
Nmax = 1 corresponding to u = 1/ V3. This condition
means that the cooperative absorption length ct./ng
should be shorter than the reflection (attenuation) length
in the gap 1/k, i.e., that the incident light should be
absorbed by the TLS before it is reflected by the Bragg
structure. In addition, both these lengths should be much
longer than the light wavelength for the weak-reflection
and slow-varying approximation to be valid.
From Eq. (7b) we find

1 1 1
5. =—3., |Qrpl=— | (I + —>2+ (13)
u 27, u

and the equation for population inversion, obtained from
Eq. (10)

_ 1 B’
w1+ (- 1) cotlpju — - P

The envelopes of both waves (forward and backward)
propagate in the same direction; therefore the group
velocity of the backward wave is in the direction opposite
to its phase velocity. This is analogous to climbing a
descending escalator.

Analogous to Kerr-nonlinear gap solitons [5,6], the real
part of the nonlinear polarization Re P, creates a traveling

FIG. 1. Dependence of the solitary pulse velocity (solid line)
and amplitude (dashed line) on frequency detuning from the gap
center for n = 0.7. At the gap edge (dotted line) u = 1/+/3 and
[EFl/IEsl = (V3 + 1)/(V3 = D).
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“defect” in the periodic Bragg reflector structure which
allows the propagation at band-gap frequencies. The real
part of the nonlinear polarization is governed by the
frequency detuning from the TLS resonance. Exactly on
resonance (which we here take to coincide with the gap
center) A = 6 = 0, ReP,; = 0, and our solutions (11)
yield imaginary values of the velocity u and modulation
coefficient «. The forward field envelope then decays
with the same « exponent as in the absence of TLS in
the structure. Because of this mechanism, SIT exists only
on one side of the band-gap center, depending on the
sign of x in Egs. (3), i.e., on whether the TLS are in the
region of the higher or the lower linear refractive index.
This result may be understood as the addition of a near-
resonant nonlinear ‘“refractive index” to the modulated
index of refraction of the gap structure. When this
addition compensates the linear modulation, then soliton
propagation is possible (Fig. 2). On the “wrong” side of
the band-gap center, soliton propagation is forbidden even
in the allowed zone, because the nonlinear polarization
then cannot compensate even for a very weak loss of the
forward field due to reflection.

The soliton amplitude and velocity dependence on fre-
quency detuning from the gap center (which coincides with
atomic resonance) are illustrated in Fig. 1. They demon-
strate that forward soliton propagation is allowed well
within the gap, for A satisfying (1 — /1 — 7?)/9p < A <
(1 + /1 — 52)/7. Inaddition to frequency detuning from
resonance, the near-resonant gap soliton possesses another
unique feature: spatial self-phase modulation o/ of both
the forward and backward field components.

To check our analytical solutions (9)—(13) we have
compared them with numerical simulations of Eq. (3) us-
ing the numerical method developed in [4]. As the launch-
ing condition, we take the incident wave in the form £y =
Aexplilw — wge) (t — 19)]/ cosh[B(t — t5)/7.] without a
backward wave (£g = 0) at z = 0. By varying the de-

Re &

Aelin

1\/ o/,

TLSs

Z

FIG. 2. The first-harmonic modulation A€ cos2kz of the lin-
ear refractive index (dashed curve) in a structure of periodically
alternating layers. This modulation can be canceled by the
near-resonant nonlinear response Ree,; (inset), if it has the op-
posite sign to Ae; at the TLS positions.
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tuning @ — wg,. and amplitude A we investigate the field
evolution inside the structure. When these parameters are
close to those allowed by Eqgs. (11) and (12), we observe
the formation and lossless propagation of both forward
and backward solitonlike pulses with amplitude ratios pre-
dicted by our solutions [Fig. 3(a)]. In contrast, exponential
decay of the forward pulse in the gap is numerically ob-
tained in the absence of TLS [Fig. 3(b)].

The observation of the predicted SIT at band-gap
frequencies requires high values of the electric dipole
moment u and high density of the TLS, in order to
achieve short 7. along with large 7, and 7, times
(to avoid dephasing and energy losses by incoherent
processes). The most adequate system for experimental
observation of this effect appears to be excitons in
semiconductors. Let us consider a periodic array of 12-
nm-thick GaAs quantum wells (A = 806 nm) separated by
A/2 nonresonant AlGaAs layers [16]. In this system g ~
107'® cmelectrons and area density concentration o ~
108 cm~? are achievable (corresponding to an average
bulk density of ~10'* ¢cm™3), which yields 7. = 10713 s,
The relaxation time (at 2 K) is then 7, ~ 10 ps [16]. A
solitary pulse duration of the order of <1 ps, i.e., much
shorter than the dephasing time 77, corresponds to a pulse
width 8 = 0.1. From Eq. (11) we find that SIT in this
structure requires that n =< 0.99, corresponding to a band-
gap reflection length 1/« = 1004, ie., Ae€;/€ey < 0.01.
An alternative choice may be bound I, excitons in CdS,
which yield similar 7. and 7, at lower exciton densities
(controlled by the donor impurity concentration) and are
therefore more appropriate for the TLS description.
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FIG. 3. Numerical simulations of the intensities of “forward”
waves in the gap (a) when Egs. (11) and (12) are obeyed
(n = 0.7, group velocity u ~ 0.3), (b) without TLS [same 7
and incident pulse as in (a)].

To conclude, we have demonstrated the possibility of
solitary pulse transmission through a one-dimensional
band-gap region, by means of near-resonant polarization
effects. In comparison with Kerr-nonlinear gap solitons,
near-resonant gap solitons have several unique features:
temporal and spatial phase modulations, the detuning con-
ditions, and the resulting velocity and amplitude thresh-
olds. Their salient advantage is stability with respect to
absorption. In contrast, strong absorption is a severe prob-
lem associated with a large nonlinear Kerr coefficient.
Regarding applications, the sensitivity to launching con-
ditions on the carrier frequency and pulse shape can make
the predicted gap SIT an effective filter for signal trans-
mission.
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