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Self-Induced Transparency in Bragg Reilectors: Gap Solitons near Absorption Resonances
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We show that pulse transmission through near-resonant media embedded within periodic dielectric
structures can produce self-induced transparency (SIT) in the band gap of such structures. This SIT
constitutes a principally new type of gap soliton.
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Self-induced transparency (SIT), namely, solitary prop-
agation of electromagnetic (EM) pulse in near-resonant
media, irrespective of the carrier-frequency detuning from
resonance, is one of the most striking and important ef-
fects of nonlinear optics [1,2]. It refiects the essence of
driven two-level atom dynamics, which is described in
the soliton frame by a pendulum equation for the pulse
area 0 (the sine-Gordon equation). If the pulse duration
is much shorter than the transition (spontaneous-decay)
lifetime (Tl) and dephasing time (T2), and 0 is a multi-
ple of 2m, then pulse-area conservation gives rise to SIT,
corresponding to reemission of the absorbed radiation in
phase with the driving field.

One of the standard tacit requirements for SIT is
uniformity of the medium. Indeed, one would expect that
partial reAection of the field in a nonuniform, e.g. , layered,
medium should destroy SIT, because the pulse area is
then split between the forward and backward (rellected)
waves and is no longer conserved for each wave. This
expectation seems to be supported by treatments of a
single thin resonant film [3] or a periodic array of such
films [4], which yield bistable (two-valued) transmission
of the incident pulse, because of the coupling of the
forward and backward waves. Should we then anticipate
severely hampered transmission through a medium whose
resonance lies in a refiective spectral domain (photonic
band gap) of a periodically layered structure (a Bragg
refiector)? In this Letter we show that, contrary to such
expectations, it is possible for the pulse to overcome the
band-gap reAection and produce SIT in a near-resonant
medium embedded in a Bragg reflector.

The predicted SIT propagation is a principally new type
of gap soliton, which does not obey any of the famil-
iar soliton equations, such as the nonlinear Schrodinger
equation (NLSE) or the sine-Gordon equation. Its spa-
tiotemporal form, intensity dependence, and transmission
mechanism are shown here to be quite unique. Never-
theless, it shares several common features with the exten-
sively studied gap solitons [5—8] or with ultrashort pulses
[9] in Kerr-nonlinear Bragg refiectors.

We consider the propagation of an EM pulse through a
medium consisting of two-level systems (TLS) embedded
within a one-dimensional periodic dielectric structure, e.g. ,
a multilayered dielectric mirror. Our starting point is the

Maxwell equation for the field E
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driven by the current of the total polarization P„, = P);„+
P„&,. The linear part of the polarization P~;„= y~;„F. is

1/2characterized by a linear refractive index n&;„= e&;„

(1 + 4m'(;„)'I2 with fundamental period d, e~;„= eo +
, b, e cos(2mkz), where k = 7r/d and he is the

variation of the mth harmonic of the dielectric index. The
nonlinear polarization P„] is the near-resonant response of
the TLS.

We may, analogous to the theory of distributed feedback
lasers [10—12], decompose the total field and nonlinear po-
larization into forward (F) and back-refiected (B) compo-
nents

Here and hereafter the upper (lower) sign corresponds
to the first (second) subscript. The first term on the
right hand side of (3) describes the forward-to-backward
wave coupling via Bragg reAection with characteristic
reIIection (attenuation) length 1/K, where K = kate~/4eo.

E(z, t) = IPF(z, t)e'"' + Ce(z, t)e '"']e ' "' + c.c. ,

(2a)

P i(z, t) = [&p(z, t)e'"' + 2e(z, t)e '"'je '""' + c.c. ,

(2b)

assuming that the carrier frequency co lies near the
center of the lowest fundamental band gap ros, = kc/no,

&/2
where flp = Ep . The small detuning from the gap
center ~cos, —co

~
&& co will be considered as phase

modulation of the complex amplitude PF(~). Under the
weak-refiection assumption (~b, e

~
&& eo) we may drop

spatially fast-varying components (varying on the scale
of a wavelength) of E and P„(, and, consistently, m ) 1

terms of e~;„. We then obtain the following coupled-mode
equations for the Rabi frequencies corresponding to the
slow-varying field amplitudes, AF(@ = pZ&(&)/it, where
p, is the dipole moment of the TLS transition [12]:

(
C —2+ AF(B) = ECK/noAs(F) + r, 2~(s) . (3)
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The second term is proportional to the TLS polarization
current, and r, = 2~co)qp, o/n oh is the inverse square

—2 2 2

of the cooperative resonant absorption time ~„o- being
the density of the TLS. Note that ~ is positive or negative
for TLS embedded in regions with the higher or lower
refractive index (5e) ~ 0 or 5 e) ( 0), respectively.

In treatments of bidirectional field propagation in media
with arbitrary spatial distribution of near-resonant atoms
[13,14], the Bloch equations for the population inversion
w(z, t) and polarization P„) are entangled in a fashion
which leads to an infinite hierarchy of equations for suc-
cessive spatial harmonics. The truncation of this hierar-
chy can only be justified by phenomenological arguments.
Here we avoid this complication by restricting the near-
resonant species distribution to thin layers (much thinner
than the resonant wavelength) with the same periodicity d
as the dielectric structure. Then the nonlinear polarization
envelopes may be decomposed as [4]

c) clt Xi~ 2c)«. 2 + l2712 'g X+ (7a)

a,'—at X = —2at2 —rt'X (7b)

Although X+ and $ now obey separate equations, they
are still coupled via P, which satisfies the Bloch equations

a, 2 = wX+ —i62,

i), w = —
2 (2 *X~ + 2 X+).

(8a)

(8b)

We emphasize again the crucial role of the assumption
that the TLS layers are much thinner than a wavelength
and satisfy the Bragg condition. Without this assumption
we could not have obtained (7) and (8), which are closed
in 2 and w (in contrast to Refs. [13,14]).

Equations (7) and (8) cannot be reduced to any familiar
soliton equation. Our main idea is to try for the above
equations a phase-modulated 2~-soliton SET solution

2F(B) = g P„)(z,, t)6(z —z, )e
J

exp[i(n g —Ar)]
cosh[P(g/u —r)] ' (9)

c),P„)(z,, t) = w(z, , t) (AFe'"'«+ Bee '"'«)

t (~gc M12)P )(znj, t),

1
,c)w(z, , t) = ——P„',(z, , t) (f),Fe' '«+ Bee '"'«)

+ c.c. , (5b)

where ~ is the population inversion and aug, —~]2 is the
detuning of the TLS resonance frequency cu» from the

gap center. The periodicity of the TLS positions which
satisfy the Bragg condition, i.e. , exp(~2ikz, ) = 1, yields
2'F = 2s ——2 in (4). Upon summing over all layers j,
the Bloch equations (5) can be written under the Bragg
condition in the following closed form, without resorting
to harmonic expansion:

c), 2 (z, t) = w(z, t) (A~ + A~) —i (tug, —m) 2) 2 (z, t),

1
i), w(z, t) = ——[2 *(z, t) (AF + Ae) + c.c.]. (6b)

In an attempt to further simplify the Maxwell-Bloch
equations, we first convert the variables to the dimen-
sionless form r = t/r„g = noz/cr„rt = ~r„and 6 =
(cog, —~)2)r, . We now rewrite Eqs. (3) and (6) for the
sum and difference of the forward and backward field
envelopes X+ = rcglF + Ae) and X = rc(AF —A~),
and obtain by simple manipulations

Here P„)(z,, t) is the nonlinear polarization of the TLS in
the jth layer (z, = jd). The Bloch equations then assume
the form

where 6 = (co —cog, )r„Ao is the amplitude of the
solitary pulse, p its width, and u its group velocity
(normalized to c).

Substituting i), 2 from Eq. (8a) into Eq. (7a), we may
express 2 in terms of X+ and the population inversion
w. Then, upon eliminating 2 and using Eq. (9), we
can integrate Eq. (8b) for the population inversion w,
obtaining

Ao(5 —n/u) 1

2(B —~) cosh [P(g/u —r)]
'

Using these explicit expressions for 2 and w in (7a) and
(8a), we reduce our system to a set of algebraic equations
for the coefficients n, 6 that determine the spatial and
temporal phase modulation, and the pulse width p as
functions of the velocity u. The soliton amplitude is then
found to satisfy lAol = 2p, exactly as in the case of the
usual SIT [2]. This implies, by means of Eq. (9), that the
area under the X+ envelope is 2rr.

Let us consider the most illustrative case, when the
atomic resonance is exactly at the center of the optical
gap, 6 = 0. Then the solutions for the above parameters
are [15]

Yj 1 3B
2u 1 —u2

p' = IAoI'/4 =

1+u
2 1 0

—u2) —g2(1 + u2)2

4(1 —u2)~

(1 1 a)

(1 lb)

In the frame moving with the group velocity of the
pulse, g' = g —ur, the temporal phase modulation will
be (au —A)r, which is found from Eq. (11) to be equal
to —rir. Since rt = ~r, is the (dimensionless) gap width,
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