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FIG. 2. Energy spectra of the channels 0 ( P) +
N( P', D', 5') in DA to NO at the indicated electron
energies of (a) 8 eV, (b) 9 eV, and (c) 10 eV. Dashed lines
are results of unfolding; the solid line is the calculated sum
intensity to be compared with data ( ~ ). Lines above each
feature represent the range of ion energies for the range g(0, 7r),
including contribution from a ~0.2 eV electron beam width
[shaded areas, Eq. (5)].

One may use Eq. (5) to calculate the LAB energy
of 0 and compare it to measurements. Shown in
Fig. 2 above each feature are the ranges of calculated
energies possible in the collision [Eq. (5)], with 8 taken
in the entire CM interval (O, m. ). It is useful to point
out an important feature of the present experimental
configuration relative to that of Refs. [1]and [2]. The 0
ions produced at the NO beam (Fig. 1) are immediately
confined by the large (6 T) solenoidal magnetic intensity.
Trajectory calculations ignoring space charge show that
ions having energies of the order of 1 eV are directed
along the solenoidal B field, including those ions ejected
at 8 = 0' (along the NO beam). Ions directed upstream
(towards F) are reflected towards TM by a mirroring
potential at the cathode. In contrast, extraction voltages
in Refs. [1] and [2] had to be a compromise between the
best ion collection possible with a flat-plate collector and
preservation of energy resolution of the electron beam (the
electron beam was magnetically confined, but the ions
were not).

In addition, the available CM energy will depend on
the energy width of the electron beam [width of F, in
Eq. (2)]. A spiral-wound, 0.016 in. diam tungsten wire
was used as the electron emitter. Because of the large
emitter surface area, low filament currents (hence, low
filament temperature) were required. We estimate the
filament temperature to be about 2000 K, corresponding
to an electron-energy width of about 2.5kT = 0.4 eV
(FWHM). Using this value, one obtains a slightly larger
range of possible 0 energies, given by the shaded
additions in Fig. 2.

e+ NO

p 4p,
QQp = AFcM + cosO +p++cM-

Plp M (5)

where F$D p is thC pCak energy Of thC transition, Igo p
the peak intensity, and WzD p the full width at half
maximum (FWHM). Results of the unfolding are shown
in Fig. 2 (dashed lines) for an average width W given by
Ws D p/E; = W/E; = 0.61.

To treat the dynamics of the DA process, we regard the
N and 0 fragments as emerging from a case where the
center-of-mass (CM) energy is zero. The 0 fragment
has a laboratory (LAB) energy given by [7]
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Here, M is the total mass of NO, F., the incident
NO energy, and 0 the CM angle of the departing 0
ion relative to the CM velocity along the incident NO
direction. AEcM is the total CM energy available for
fragment translational energy, which is also the factor in
brackets in Eq. (2).
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FIG. 3. Unfolded peak intensities of the channels 0 (2P) +
N(2P', 2D', ~5 ) in DA to NO as a function of attaching elec-
tron energy E, . Straight lines are drawn with the theoret-
ical kinematic slope of ~/mo = 14/30. Threshold energies
are 8.611 eV (2P ), 7.419 eV (2D ), and 5.035 eV (4S, not
indicated).
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~,(E,) = C Is(Ee, E;)dE, + 10(E„E;)dE;

Not included in this estimate of the energy range are
two additional effects: (a) Anisotropic scattering intensity
in the range 8(0, vr) due to different angular differential
cross sections [DCS(8)] for each energy and transition.
We have assumed a constant DCS(0), and the use of
the actual DCS(8) would tend to narrow the distributions
by limiting the effect to the peak of the DCS(0). (b)
Energy broadening of the TM (Fig. 1). From simple
considerations (the length and spacing of the plates,
aperture diameters at the entrance and exit), an energy
broadening WTM/E, = 0.39 is calculated. This effect
would broaden all peaks, depending on their location in

E;, and is almost certainly responsible for the tailing in
the 0 distributions (Fig. 2).

To demonstrate in an alternate way the correct energy
dependence of the transitions, plotted in Fig. 3 are the
energies of the peak unfolded intensities as a function
of E, . The dashed line through each of the data points
represents the theoretical slope p, /mo ——14/30, consistent
with Eq. (2).

Finally, one may relate the DA cross section for each
channel oso p(E, ) to .the total attachment cross section
~T(E, ) by
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FIG. 4. Electron attachment cross sections os(E, ), .
op(E, ), a. nd oo(E, )

. for the individual S, P, D channels
normalized to the total cross sections o.r(E, ) of Ref. [8].
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Ip(E„E;)dE;

Here, C is a normalization constant which relates the total-
collected scattering intensities to the absolute total cross
section o.T(E,) reported in Ref. [8]. Calculation of C may
be made from data at any electron energy. The channel
cross sections are then given by

C fo Is(Ee E&)dE&'
~r(E.)

C fo Io(E„E;)dE;
~T(E.)

C f,"I (E„E;)dE,
~r(E.)

(7)

The normalization constant C may be calculated at
each of the six energies at which or(E„E;) were mea-.
sured. These six values resulted in a value C = (2.548 ~
0.103) X 10 '6 cm2 at the lo. level of random error. DA
cross sections for the three channels as a function of elec-
tron energy E, are shown in Fig. 4 [9]. The errors indi-
cated are the squared sum of the statistical error, unfolding
error [assumption in Eq. (4)], and error in the underlying
~r(E.)
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