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Fast Hadronization of Supercooled Quark-Gluon Plasma
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A new rapid hadronization scenario is proposed based on the dynamical chiral model including
quarks interacting with background meson fields. We estimate time scales and spatial characteristics
of chiral-symmetry breaking instabilities in expanding, nonthermal quark-gluon plasma. The transition
from the chirally symmetric to broken state proceeds through the formation of multiquark-antiquark
clusters, surrounded by domains of the coherent chiral field.
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In the coming years serious experimental efforts are
planned at the CERN Super Proton Synchrotron and
Large Hadron Collider (LHC) and at the Brookhaven
(BNL) Relativistic Heavy Ion Collider (RHIC) to pro-
duce quark-gluon plasma (QGP) in heavy ion reactions.
The dynamics of the rehadronization of the expanding
and cooling QGP was discussed recently [1,2] on the ba-
sis of the nucleation model. In the thermally overdamped
limit the characteristic nucleation time was found to be
=100 fm/c, which led to the conclusion about strong su-

percooling of plasma. Because of this large supercool-
ing other faster processes must also play a role in the
hadronization [3]. Nonthermal processes are possible if
the hadronization happens simultaneously to the thermal
freeze-out or later. In particular, it has been shown [3]
that in this case the release of the latent heat does not nec-
essarily lead to an overheated final hadronic phase, as it
was thought earlier [4].

Recent lattice-QCD calculations [5] predict T, = 150—
170 MeV. Taking 20% supercooling, necessary to ac-
celerate the nucleation, we get transition temperatures of
130 MeV. At such low temperatures parton collisions are
already too rare to maintain thermodynamical equilibrium
in the rapidly expanding plasma. Therefore, we expect
freeze-out in the plasma phase, before hadronization. In
this case the abundances and spectra of hadrons will re-
flect freeze-out conditions in the QGP.

This picture is in qualitative agreement with recent ex-
perimental data. Enhanced production of strange particles
in central nucleus-nucleus collisions as compared to pp
and PA reactions was observed in several experiments [6].
Heavy ion data show almost equal yields of A and p at
midrapidity compared to their ratio of 0.2 in pp collisions
[7]. Both these observations can hardly be explained in
the equilibrium hadronic scenario. The data suggest also
a high specific entropy and sma11 chemical potential for
strange particles [8]. This is also in agreement with the
rapid hadronization of the QGP and no rescatterings of
produced hadrons.

The dynamical chiral model. —Let us consider late
stages of the QGP evolution when collisions between

(o-) = 0, (~) = 0. (3)
This state becomes a true ground state of the matter at
high density and/or temperature signaling the restoration

partons have already ceased and they interact only with
the background fields. The evolution is governed by
the interplay between the collective expansion and the
intrinsic instabilities of the system. To describe such
a system we use an effective field-theoretical model,
the linear o. model, where quarks are moving in the
background chiral field. Several works [9—12] have
dealt recently with similar problems, however, without
introducing quark degrees of freedom explicitly. The
Lagrangian is

5 = q[iy~a" —g(o- + iy5Y7r)]q-
+ —,(a ~a~~+ a ra&~) —U(~, ~), (1)

where U(o. , 7r) = A /4(o. + 7r —v2)2 —Hois the so-.
called "Mexican hat" potential, q stands for the light (u
and d) quark fields, while o. and 7r = (m~, vr2, vr3) are
the scalar and pseudoscalar pion fields which together
form a four-component chiral field (o., vr). Without the
term Ha- this Lagrangian is invariant with respect to the
SUL(2) SUR(2) chiral transformations. The parameters
in this Lagrangian are chosen in such a way that in normal
vacuum chiral symmetry is spontaneously broken, and the
expectation values of the meson fields are

(~) = f., (~) = 0, (2)
where f = 93 Me V is the pion decay constant. To
have the correct pion mass in vacuum, m = 138 MeV,
one should take v2 = f2 —m~ /A2 and H = f m2 . The
parameter A is related to the o. mass m~ = 2A~f~ + m~,
which is usually chosen as =0.6 GeV (then A2 = 20).
The remaining coupling constant g can be fixed by the
requirement that the effective quark mass m in normal
vacuum m = g(tr) = gf coincides with the constituent
quark mass m =

mtv /3, yielding g = (mtv/3)/f
In addition to the normal vacuum state (2) the La-

grangian (1) has one more stationary point on the top of
the potential, U. In the chiral limit m 0 it corresponds
to
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of chiral symmetry. The difference between the energy
densities of the symmetric and broken vacuum states, i.e.,
the bag constant, is B = (A2/4)f —m4 in this model.
We assume that the system is initially in the chirally
symmetric phase.

We perform calculations within the mean-field approxi-
mation, ignoring all loop contributions. Therefore, we
consider o. and F as classical fields obeying the equations
of motion:

a~a~o-(x) + A~[o-'(x) + 7r'(x)—
v']o-(x) —0 = —gp~(x),

a„a~~(x) + A'[o-'(x) + rr'(x) —v']rr(x) = —gpp(x).
(4)

Here pz = (qq) and pp = i(qyzrq) are scalar and pseu-
doscalar quark densities, which should be determined self-
consistently from the motion of q and q in background
meson fields.

Relativistic kinetic equation. Using the Wigner func-
tion formalism one can derive the relativistic transport
equation for the o.-model Lagrangian (1). Analogous cal-
culations have been performed for the Walecka model
[13] and for the Nambu —Jona-Lasinio model [14]. Dis-
regarding spin polarization effects one can represent the
Wigner matrix for quarks in the form

W(x, p) = f(x, p)[o-(x) —iysr~(x) + p~y~]. (5)
In the quasiclassical approximation the scalar part of
the Wigner function f(x, p) obeys the relativistic Vlasov
equation

p~a~ + 2 [8~m (x)] f(x, p) = 0, (6)

where the quark (antiquark) effective mass m(x) is ob-
tained self-consistently,

m'(x) = g'[o-'(x) + vr'(x)]. (7)
This expression for m can be justified also by chiral-
symmetry arguments. The vanishing collision term on
the right-hand side of the transport equation (6) reflects
the fact that we are describing the evolution of the system
after freeze-out.

It is well known (see, for- instance, Ref. [13]) that
in Eq. (6) the 4-vectors x and p should be treated as
independent variables. Nevertheless, only those solutions
are physically meaningful which are finally projected on
the mass shell, p"p~ = m2(x).

According to Eq. (5), the scalar and pseudoscalar
densities can be represented as

pz(x) = a(x)o(x), pp(x) = a(x)vr(x), (8)
where a(x) is expressed in terms of the momentum
distribution function f(x, p),

d4
a(x) = v, , 26(p"p~ —m'(x))f(x, p)2776 3

d3
, [n, (x, p) + n;(x, p)]. (9)2~fi)3 E x, p)

Here vq is the degeneracy factor of quarks F(x, p) =
Qm2(x) + p~, n~(x, p) and n~(x, p) are the occupation
numbers of valence quarks and antiquarks.
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Boost-invariant expansion. —First we study the boost-
invariant expansion of the plasma in homogeneous
background fields. Let us define the proper time and
space-time rapidity coordinates as r = v t~ —z2, and

I

rt =
2 ln[(t + z)/(t —z)], where the z axis is cho-

sen along the beam direction. Besides, we introduce
the transverse momentum p& and the rapidity of quarks

y =
2 In[(E + p, )/(F —p, )]. We assume that the meson

fields and the quark densities depend on the proper time ~
only. We also assume that the Aow rapidity of the matter
is equal to the local rapidity coordinate, consequently the
local four-velocity of the flow is u" = (t, 0, 0, z)/r [15].

Under these assumptions one can prove that the Vlasov
equation (6) is satisfied by an function f(s, p~), which
besides p& depends on only one scaling variable, s =
~(&/&0) (p~u~) —m2(r) —p~. On the mass shell s =

(r/ro)p~~, where p~~
= m (r) + p& sinh(y —rj) is the

longitudinal momentum in the local rest frame.
At freeze-out 7. = 7.0 the quark and antiquark occupa-

tion numbers can be approximated by the Fermi-Dirac dis-
tribution,

n~(x, p) = exp

and nq(x, p) = nq(x, p; po —po). Here po = p, (ro)
and To = T(ro) are the chemical potential and temperature
at the time of freeze-out. The scaling solution of the
Vlasov equation at ~ ) v.o can be obtained now from
Eq. (10) by simply changing p~~ to p~~~r/ro

The post-freeze-out evolution of the momentum distri-
bution of quarks and antiquarks is characterized by two
features: (i) it becomes narrower due to the growing effec-
tive mass m(r) with increasing r and (ii) an anisotropy is
developed in the momentum space, because the p~~ distri-
bution additionally shrinks as ro/r. The scaling solution
for the case m = 0 was found and discussed in Ref. [16].

Now one can calculate a(x), Eq. (9), as a function of r
and m in a straightforward way. After substituting ps and

pp into the equations of motion (4) for meson fields one
can solve them for a specified initial condition at ~ = ~o.

Some features of the dynamics are similar to those
found in Ref. [12], where pure mesodynamics was con-
sidered without quarks. At some state of the evolution the

q/q density drops so much that the point o. = 0, 7r = 0
becomes a local maximum of the effective potential.
Then the fields start rolling down along the potential well
towards their new equilibrium values given by Eq. (2).
Because of the large mass the scalar field relaxes rapidly
to its new equilibrium value f, but the pion field expe-
riences long oscillations around zero. Below we discuss
the characteristic time scales for this transition.

Unstable mode analysis. —Let us study the onset of
instability associated with the chiral-symmetry breaking
transition. We apply here a linear response method which
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was used earlier for analyzing spinodal instability in nu-
clear matter [17]. We consider small perturbations around
the homogeneous solution o- = 0, P = 0. Initially all di-
rections in the isospin space are nearly equivalent and one
can, for instance, introduce a perturbation 6o- along the o.
axis, (7 = (o.) + 6(T, with ((r) = 0. The linearized equa-
tion of motion for 6' is

[()~()" —A v + g a(r)]Do. = 0. (11)
In the lowest order it is sufficient to calculate a(r) at
m = 0. For the scaling solution f(s, p&) with m = 0
one can perform the momentum integration in Eq. (9)
analytically yielding

In sta bility
I I

I
I I I I I I I I I

I

I I I I E t I I

where h~(x) = arcsin(gl —x )/Ql —x2. In two limit-
ing cases one has h)(1) = 1 and h~(0) = rr/2. Below we
consider the baryon-free plasma where the quark chemical
potential vanishes, p, p

= 0.
We assume that the overall expansion is slow and

consider plane wave solutions with a wave vector k
along the beam axis: Bo(r, z) =. Bo.„ke '"'+'"'. In an
expanding system all wavelengths will be uniformly
stretched in accordance with the growing linear scale: k

krp/r. Then from Eq. (11) one obtains the dispersion
relation between the frequency and the wave number of
the fluctuation:

where

= k (rp/r) —k,„, (13)

2 2

kmax ~ & g & +Tp pp 7p 7p
h'12 2

Unstable modes correspond to the solutions with 1m' )
0. They appear at krp/r ( k,„. The value of k,„
depends on the freeze-out parameters and on the time of
the subsequent post-freeze-out expansion.

In numerical estimates we use the standard parameters
3 3 pq = 12 and A = 20. In a thermally equili-

brated system, the model predicts the instability of the
chiral-symmetric state (3) at T = m /g~2 = 130 MeV.
According to Ref. [3] the rapid freeze-out may start at

6 10 fm/c and Tp = 140—100 MeV, respectively.
Therefore, the onset of instability is close to the ther-
mal freeze-out. Below we take Tp = 130 MeV and ~th

rp = 7 fm/c. The increments of unstable modes Imco
calculated for these parameters are shown in Fig. 1. The
characteristic growth time is obviously equal to I/Im~.

One can see that the long wavelength fluctuations
(k ~ 0) grow most rapidly, while shorter ones grow at
a smaller rate, going to zero at k ~ k,„r/ro Therefore, .
new shorter and shorter wavelength modes become un-
stable with increasing ~.

The possibility for instability opens at some threshold
time r(h determined from the transcendental equation (13)
at cu = k = 0. At 7 = r, h the instability just becomes
possible for k = 0, and the corresponding growth time is

'0
k [1/fm]

I I I I I I I I

FIG. 1. The increment of instability Im~ as a function of
the wave number k for different times after the freeze-out:
r = 10 fm/c (full line), r = 20 fm/c (dash-dotted line), and
r = 100 fm/c (=~, dotted line).

infinitely long. When the system expands further Imago

grows rapidly. Quarks and antiquarks stabilize the sys-
tem and make the transition less sharp. Nevertheless, as
Fig. 1 shows, the fluctuations of 1 fm size have a charac-
teristic growth time of the order of a few fm/c soon after
the freeze-out. At later stages of the expansion the charac-
teristic growth time of the intrinsic instability, I/1m' =
J2/m = 0.47 fm/c, is much shorter than the typical time
scale of the expansion, -10 fm/c. Therefore, the process
under consideration can be indeed responsible for the rapid
hadronization of QGP in heavy ion collisions.

Multiquark-antiquark clusters. —In the next order ap-
proximation one should take into account the finite quark
effective mass in regions with nonzero meson fields.
From Eq. (9) one can see that the quantity a(x), determin-
ing the quark densities through Eq. (8), is a decreasing
function of m. In other words, the propagation of quarks
and antiquarks into the regions with large meson fields
is suppressed by the large effective mass. Therefore, the
nonlinear effects amplify the inhomogeneity leading to the
spatial decomposition of the system into the domains with
reduced and enhanced q/q density. This will result in
the formation of multiquark-antiquark clusters or droplets
surrounded by the regions of excited vacuum. Inside the
clusters the chiral symmetry is preserved and quarks or
antiquarks have small, current masses (large q-q bags).

At some stage the clusters will decouple from the
overall expansion. We expect that this happens when
the energy density inside the clusters drops below that
in ordinary hadrons. Such clusters are very unstable and
later on decay into usual hadrons. Each cluster should
produce a bump in the rapidity distribution of emitted
hadrons, their typical transverse momenta are of the
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order of 300 MeV/c. Since hadron formation takes place
already in the dilute system, this should not lead to the
hadron rescatterings and reheating of the hadronic phase.

Coherent pion field. —The evolution of vacuum to the
normal, spontaneously broken ground state goes through
the generation of the time-dependent chiral field. One
can expect that after an incoherent excitation of many
modes of instability, later only few, most unstable, long
wavelength modes will dominate. Because of the large
amplitude and the coherence they may be treated as
classical field configurations (chiral condensates) [18—
20]. Numerical simulations [9,11,12] show that the pion
field oscillations persist as long as r = 20 —40 fm/c.

A striking feature of the coherent pion field is the
isospin alignment. Therefore, its decay products will
have a large isospin imbalance between charged and
neutral pions [18—20]. In different domains the isospin
orientation could be different leading to the disoriented
chiral condensates [20]. Events of this kind, Centauros
(with vr- excess) and anti-Centauros (with 7ro excess),
have been observed in cosmic ray experiments [21]. The
observation of Centauro-like events in relativistic heavy
ion collisions would be a clear signature of the chiral
phase transition.

Because of the collective expansion the decomposition
of matter goes faster in the longitudinal direction compared
to the transverse one. Therefore, initially, domains may
look like "pancakes" perpendicular to the beam axis. At
a later stage the instability will also develop in the trans-
verse direction. The characteristic size of domains is at
present a matter of debate. The growth dynamics and the
size of domains of the coherent chiral condensate were
studied in Refs. [9—11,22] in the quench approximation
and in Ref. [12] within a more realistic model incorporat-
ing expansion. A small domain size will reduce to a large
extent the signal of the coherent pion field. If the domains
are large, of 3—7 fm size as predicted in Ref. [12], then in
addition to the isospin alignment, the emitted pions should
have very low relative momenta, say p, ( 50 MeV/c. We
would like to emphasize, however, that this does not affect
significantly our hadronization scenario.

In conclusion, we proposed a new scenario for rapid
hadronization of the QGP at RHIC and LHC energies.
The hadronization is associated with the transition from
the initial, chirally symmetric state to the spontaneously
broken final state. This process leads to the formation of
q-q clusters surrounded by domains of excited vacuum
with oscillating scalar and pion fields. The characteris-
tic decomposition time is about a few fm/c, i.e., much
shorter than the time scale of homogeneous nucleation.
The fast hadronization process should manifest itself by
short emission times in Hanbury-Brown —Twiss measure-
ments. The specific signals of the chiral transition, i.e.,
large fluctuations in isospin and rapidity of produced pi-

ons, can be observed only on an event-by-event basis.
Other signals, such as an excess of low p, pions, enhanced
strangeness production, and vanishing in-medium effects
should be seen even in event-averaged data.
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