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Momentum Distribution Sum Rule for Angle-Resolved Photoemission
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Within a spectral function A(k, cu) interpretation of angle-resolved photoemission (ARPES), the
intensity obeys the sum rule j des f(cu)A(k, cu) = n(k), where f is the Fermi function and n(k)
the momentum distribution. We show the usefulness of this sum rule for analyzing ARPES data.
The integrated intensity in Bi2Sr 2CaCu 208 at k F is independent of temperature even though the
spectrum is strongly T dependent. We also demonstrate the possibility of measuring n(k) using ARPES
for YBa2Cu40g.
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Angle-resolved photoemission spectroscopy (ARPES)
has played a major role in the study of the high tem-
perature superconductors (HTSC). Some of the impor-
tant results obtained by ARPES are a Luttinger Fermi
surface in the normal state [1,2], flat bands or extended
saddle-point singularities in the band structure [3,4],
and observation of the superconducting gap [5] and its
anisotropy [6,7]. These results are largely deduced from
the positions of spectral features; the next set of impor-
tant questions require an understanding of spectral line
shapes.

Formally, photoemission measures a nonlinear response
function given by a three current correlation [8]. Under
certain simplifying conditions, principally the validity of
the impulse approximation, this reduces to a much simpler
result [9] involving only the one-particle spectral function
A(k, cu). For a quasi-two-dimensional system, one then
finds that the ARPES intensity I(k, co) ~ f(to)A(k, to),
where f is the Fermi function. With 20 —30 eV incident
photons, it is not a priori obvious that these simplifica-
tions should be justified.

Our aim here is to assume the spectral function inter-
pretation, deduce some general consequences, and check
them experimentally with a minimum of additional as-
sumptions and without making fits involving free parame-
ters. The success of this strategy, as described below,
greatly strengthens the case for a simple A(k, ta) interpre-
tation for ARPES spectra.

More specifically, we explore the consequences of a
well-known sum rule relating the integrated ARPES in-
tensity to the momentum distribution. Somewhat surpris-
ingly, the usefulness of this sum rule has been overlooked
in the ARPES literature. Our main results are as fol-
lows: (1) At k = kF we derive an approximate sum rule
which explains why the area under the ARPES curves
for BizSr2CaCu20s(BISCO) is essentially independent of

temperature, even though the line shapes themselves have
strong T dependence. (2) Based on our analysis we con-
clude that the observed sharpening of the ARPES peak in
the superconducting state is not a pileup in the density of
states. It is, in fact, a consequence of the sum rule together
with the dramatic increase in the single-particle lifetime be-
low T„presumably due to electron-electron interactions.
(3) We demonstrate the possibility of measuring the mo-
mentum distribution n(k) using energy-integrated ARPES
signals for YBazCu40s. Note that n(k) is a quantity of
great theoretical interest and its experimental determina-
tion is very important.

We begin with some standard formalism to intro-
duce our notation. The one-particle spectral function
A(k, to) = —(I/7r) ImG(k, co + i0 ) can be written as
the sum of two pieces A(k, co) = A (k, ~) + A+(k, co).
In terms of exact eigenstates lm) with energy X, the
spectral weight to add a particle to the system is given

by A+(k, co) = Z ' P „e t + l(nick lm)1~8(to + &
'E„), and the spectral weight to extract a particle from
the system A (k, to) = Z ' g, e t +-l(nlcklm)l 8(co +
'E„—2 ), where Z is the partition function and

p = I /T. It follows from these definitions that
A (k, to) = f(to)A(k, tu) and A (k, co) = [1 —f(to)] X

A(k, to), where f(to) = I/[exp(pto) + 1] is the Fermi
function.

Since an ARPES experiment involves removing an
electron from the system, within a simple golden rule
calculation the measured intensity is proportional to
A (k, cu):

I(k, co) = Ip(k) f(to)A(k, co).

The prefactor Io has k dependence from the electron-
photon matrix element lMl . The dependence of Ip on the
incident photon energy and polarization, and on the final
state, is not explicitly shown above. The important point
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is that Io does not have any significant cu or T dependence.
Thus the line shape of the energy distribution curve (EDC)
and its T dependence are completely characterized by the
spectral function and the Fermi factor.

We now discuss various sum rules for A(k, tu) and their
possible relevance to photoemission [10]. The simplest
one, f den A(k, cu) = I, is not useful for ARPES since
it involves both occupied and unoccupied states, i.e.,
it is a sum rule for photoemission (A ) plus inverse
photoemission (A+). Next, the one-particle density of
states (DOS) is given by gk A(k, cu) = N(~), and thus,
ignoring the k dependence of the prefactor Io, the well-
known sum rule for the conservation of states in the
DOS would apply to angle integr-ated photoemission [11].
However, provided one has sharp momentum resolution
one is not summing over all k's, and the commonly used
description of the sharpening of the ARPES peak below
T,. as the "BCS pileup in the DOS" is simply not correct.
The correct interpretation will be discussed below.

The important sum rule for ARPES is
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FIG. l. (a) ARPES spectra for BISCO at k = k& (point I in
the BZ shown in inset) for various temperatures; the base lines
are shifted for clarity. (b) Integrated intensity as a function of
temperature for the data shown in (a).

dtu f(cu)A(k, cu) = n(k),

which directly relates the energy-integrated ARPES inten-

sity to the momentum distribution n(k) = (ckck). (The
sum over spins is omitted for simplicity. )

Let us use the notation "k = kF" to denote k on the
Fermi surface for a normal system. For a superconductor,
we use k = kF to denote k such that the excitation
energy is a minimum with respect to ~k~ for a fixed k.
Experimentally, for BISCO is has been shown that kF in
the normal and superconducting states coincide [7].

1Recall that n(kF) =
z is independent of T for the free

Fermi gas and the BCS superconductor (and also in Eliash-
berg theory [12]). In all of these cases this result follows
from "particle-hole symmetry": A( —ek, —M) = A(ek, co).
We will argue that, under more general conditions, n(kF),
and hence the integrated intensity at kF, is independent
of T above and below T, We can rew. rite Eq. (2) as

n(k) =
z

—fo des tanh(Ptu/2) [A(k, cu) —A(k, —cu)]/2.
Thus n(kp) is independent of temperature provided
A(kt t

—tu) = A(kF, tu); in fact, the latter condition is
required only for low frequencies [13]. We emphasize
the approximate nature of the kF sum rule since there is
no exact symmetry which enforces it.

Note that only for k = kF is n(k) T independent. [For
k's far from kF with excitation energies much larger
than T, we expect no T dependence in n(k) either. ]
However, for k near kF we expect qualitatively different
T dependences for occupied and unoccupied states. For
increasing T, in the normal state, n(k) should decrease for
k inside the Fermi surface while it should increase for k
outside.

In Fig. 1(a) we show EDC's for BISCO (T, = 87 K)
on the Fermi surface along the MY direction [at point 1

in the Brillouin zone (BZ) in Fig. 1], for 95 ~ T ~ 13 K.

Details of the experimental procedure and on the samples
may be found in Ref. [7]. The optically flat sample
surface quality is crucial for the observation [7] of sharp
peaks with substantial dispersion. The energy resolution
for the data in Fig. 1 is a Gaussian with o = 8 me V
(FWHM = 19 meV) and the momentum resolution is
~1 . We note that the very sharp energy resolution is
not essential for our present purposes since we will be
interested in energy-integrated quantities here. However,
sharp momentum resolution is of the essence.

An important point in comparing data at different
temperatures is the normalization of the EDC's. The
data were recorded in absolute units: number of electrons
per incident photon. However, the sample surface loses
adsorbed gases with increasing T, leading to small T-
dependent increases in intensity. To account for this,
and changes in the position of the sample due to thermal
expansion of the holder, a small adjustment ((5% for
freshly cleaved samples) was made in the normalization
using the following criterion. Data at a fixed k but
different T were normalized so that the positive binding
energy background (liat part at cu ) 40 meV which is
unrelated to the signal of interest, primarily at tu ( 0)
is the same for all T. After normalization the cu ) 0
background was chosen to be the common zero base line.

In Fig. 1(b) we plot the integrated intensity of the
EDC's as a function of T and find that, in spite of the
remarkable changes in the line shape from 95 to 13 K [see
Fig. 2(a)], the integrated intensity at kF is very weakly T
dependent. The error bars come from the normalization
due to the low count rate in the co ) 0 background.
Similar results are obtained at other points on the Fermi
surface.

The T-dependent changes in the line shape may be
understood as follows. At 95 K one has a very broad
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We show that the energy-integrated ARPES intensity
offers a novel way to experimentally study the momentum
distribution.
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FIG. 4. Integrated intensity, which is proportional to n(k), for
the EDC's in Fig. 3, as a function of k for points marked in
the BZ. The arrows show the Fermi surface crossings inferred
from Fig. 3.

momentum distribution of this normal state by integrating
the EDC's over the energy interval shown in Fig. 3.

The integrated intensity is plotted along two directions
in the BZ in Fig. 4. We get information about n(k)
only to the extent that we can assume the prefactor Io(k)
in Eq. (1) to be constant in the small range of k's of
interest. (It is possible to improve upon this by obtaining
matrix elements from electronic structure calculations,
especially since experiments show that matrix elements
for equivalent points in two zones can be very different. )

The momentum density peaks at the bottom of the band
at the I' (0, ~) point and then decreases to zero along the
YS (k, ) direction. The Fermi surface crossings along the
5-Y-5 direction deduced from the dispersion data in Fig. 3
are marked on the n(k) plot in Fig. 4. The width of the
observed n(k) is dominated by our momentum resolution
of ~1 corresponding to 6k a = ~0.17 shown in Fig. 4.
With improved momentum resolution, it is possible that
in the future ARPES will be able to address the important
question of the T = 0 singularity in n(k). We note that
this is the first measurement of n(k) for the CuO plane
electrons [16].

In conclusion, we present experimental evidence for a
sum rule that greatly strengthens the case for a simple
spectral function interpretation of ARPES data in HTSC.
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