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Magnetization Relaxation via Quantum and Classical Vortex Motion in a Bose Glass
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I show that in a Bose glass superconductor with high j,, and at low T the magnetization relaxation
(S), dominated by quantum tunneling, is ~ ~j, , which crosses over to the conventional classical rate
~ T/j, at higher T and lower j„with the crossover T" —j3t2. I argue that due to interactions
between flux lines there exist three relaxation regimes, depending on whether B ~ B&, B = B@,B ) B&,
corresponding to strongly pinned Bose glass with large j,2, Mott insulator with vanishing 5, and weakly
pinned Bose glass characterized by small j,l. I discuss the effects of interactions on j, and focus
attention on a recent experiment which is consistently described by the theory.

PACS numbers: 74.60.Ge, 74.60.Jg, 74.20.Hi

In high-T, superconductors flux line vortices play a
major role in determining dissipation effects, and as a
result of strong fluctuations a fairly passive Abrikosov
lattice is replaced by a variety of new phases. At high
temperatures and fields, thermal fluctuations melt the
Abrikosov lattice over a large portion of the B-T phase
diagram resulting in a strongly dissipating vortex liquid
[1]. On the other hand, quenched disorder, at low T and
B, leads to a variety of proposed glassy phases with the
vortex glass [2] corresponding to point disorder such as
oxygen vacancies and interstitials, and the Bose glass [3]
resulting from the introduction of columnar defects into
the superconductor [4].

In the presence of both point and correlated disorders
there is a variety of regimes with a very different
mechanism for flux line motion, depending on the relative
strength of disorder, temperature, and current, many of
which have been lucidly discussed in Refs. [2,3]. In this
Letter I focus on a narrower range of behavior, relevant to
the specific magnetization-relaxation experiment that will
be discussed below [5]. I study vortex motion at high
currents j = j, and very low temperatures, deep in the
Bose glass regime, by adapting the quantum creep theory
[6] to dissipation in the presence of columnar defects.
I show that quantum relaxation can be distinguished
from the classical regime not only by the absence of
temperature dependence but also by the counterintuitive
increase of the magnetization relaxation rate with j„
which I find to be ~ ~j, in the quantum dissipation-
dominated regime.

Studies of magnetization relaxation have provided us
with important clues into the mechanism of flux line
motion in the presence of currents and disorder. There
appears a natural separation of two time scales. An
exponentially fast relaxation of B to the Bean critical
state profile [7] takes place as long as local currents
exceed the critical current j„determined by the strength
of pinning of vortices, followed by a very slow, typically
logt relaxation, the regime that I focus on in this work.

1 dM
5, =—

Mp d(logt)
T
U

(2)

An experimentally verifiable signature of this classical
prediction is that 5, vanishes linearly with T and is in-
versely ProPortional to j, = Uc/Job, where @o = hc/2e,
b is the effective diameter of the columnar defect, and
both U and b are likely to be renormalized by the thermal
fluctuations and the interactions.

In numerous recent experiments at very low T, how-
ever, the creep rate appears to extrapolate to a finite value
at T = 0 [10] which has been taken as evidence of quan-
tum tunneling of vortices out of pinning sites [6,11,12].
Using instanton methods it can be shown [13] that the

Our understanding of the motion of vortices goes back
to the Anderson-Kim (AK) model [8]. The flux lines are
treated as independent particles thermally activated over
finite impurity barriers U, moving down a washboard
potential representing disorder with the average slope
proportional to the external current j. Because the
barriers are finite and flux lines therefore can be thermally
activated over the local barrier, this theory predicts a
finite linear flux flow resistivity for j » j, and for j «j,
[although strongly suppressed by the exp( —U/T) factor].
Near j, the I-V characteristic is highly nonlinear with

V(j) —exp(j/j, —I)&. Recently, however, it has been
appreciated that for j ( j, in glass phases the vortex
motion is via vortex loop nucleation over barriers. This
leads to effective barriers U(j) —(I/j)p that diverge as

j ~ 0, where p, is determined by the details of the glass
phase and by the range of j [2,3,9]. Although these
theories disagree with AK theory at low j, predicting
vanishing linear resistivity, all the classical models of
vortex motion, for j ~ j„lead to the following form of
magnetization relaxation out of the Bean state:

——1/p,

M(t) = M„ 1 + log(t/t )
Tp
U

which leads to the classical magnetization relaxation rate
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thermal depinning rate exp( —U/T) is replaced by the tun-
neling rate exp( —S~/lt), where S~ is the Euclidean action
evaluated at the stationary field configuration. In analogy
to Eq. (2), the quantum magnetization relaxation is given
by [6]

action introduced previously by Caldeira and Leggett [15]
to account for dissipation in a quantum system.

To compute the quantum relaxation rate Sq, I first de-
termine the space-time field configuration of the tunnel-
ing vortex loop, characterized by the l&, 3, space length
scales and time scale to, by balancing terms in the action.

Sq

Lorentz energy, Ul, = jp ol, lz/c, leads to lz = bj(, /j ), .

which in a magnetization relaxation experiment with j =an appealing result since 6, analogously to T, controls
quantum fluctuations and S& plays the role of a quantum
barrier in (3 + 1) space-time-dimensional field theory.

A transparent way to understand the form of S~ is to
look at the equation of motion for the Aux line

d2r (z, t) dr (z, t) dr (z, t)
M ' + n

dt2 dt dt

j, reduces to lg = b. The relaxation is therefore domi-
nated by half-loops and only involves individual columnar
pins in each nucleation process [3]. Competition between
the elastic and Lorentz energies, e&b /l, = j,gaol, b/c,
gives l, = b(j &/j, )', where j& = e~c/gob is propor-
tional to the depairing current jo. Finally, balancing these
free energy contributions against the dissipation term
tlb /to = e~b /l, gives to = (g/e~)l, . Substituting this
instanton configuration inside SE = e, tob /l, and using
Eq. (3) I obtain

—v, Xg+

6F[r ]
Br(z, t)

'

where r (z, t) is the displacement of the flux line transverse
to the g axis, M is the effective vortex mass, g and n
are the viscous and Hall drag coefficients, v, is the local
superAuid velocity, and F is the vortex free energy. In the
above equation, the first two terms are the nondissipative
inertial and Hall forces, and the third term is the Bardeen-
Stephen dissipative friction force, with g = /OH, 2/p„c
It is not difficult to include all three terms in the analysis;
however, in high T, materials for j = j, and at long times
I expect that the viscous drag term will dominate and
I therefore focus on this term [14]. The effects of the
nondissipative inertial and Hall terms have been studied
in Refs. [6,11] for point disorder and by me in the case
of columnar defects. The inertial term leads to a T- and

j -independent contribution to Sq, while the Hall term
(by dimensional analysis) has the same scaling as the
viscous contribution. The functional integration over I".

(analytically continued to imaginary time and transformed
to frequency domain) of the resulting simplified equation
leads to the Euclidean action

(6)

The above result obtained for individual columnar defect
pinning is surprisingly similar to the case of collective
quantum creep for point disorder previously obtained
by Blatter, Geshkenbein, and Vinokur [6]. This Bose
glass result is suppressed by the factor of (b/$)~ relative
to the point disorder result, and the depairing current

jo is replaced by j~ = y($/b)jo. This counterintuitive
dependence of Sq, in which the relaxation rate increases
with the pinning strength (larger j,.), is a clear and
intriguing sign of quantum vortex motion.

The total magnetization relaxation rate S is a combi-
nation of quantum and classical rates, which have very
different j, and temperature dependences. Although a
detailed crossover function is difficult to compute, much
of the interesting information can be obtained from the
asymptotic behavior of S

(3) Balancing the pinning energy (U = b @oj,/c) against the

2

dw dz fwffr(w, z)f' +—
2 2

S =. a„„+a~q~j, for T ( T".

a, —. for T )T' (7)

+ U(r ) —fL (5)

where the second term is the elastic energy, U(r ) is the
pinning energy, and the last term is the contribution due
to the Lorentz force ft = pop x j/c acting on the flux
line. To be specific I consider the regime in which the
coherence length g = 15 A is significantly smaller than
the diameter of the columnar defect b = 70 A. In this
case, U(r) = —U = —eo =— (Po/4vrA) for r —( b and
vanishes for a flux line outside of the columnar defect.
For B » Po/A, when the average spacing between
flux lines a = (Po/B)'l2 » A, the tilt modulus is well
approximated by eI = yeo, with y = (M&/M, ) log(a/g)
describing material anisotropy. The viscous drag term (g)
in Eq. (5) is identical to the contribution to the effective

where a~& is defined by Eq. (6), a,. = c/bgo [see
Eq. (2)], and a~„ is a j,-independent contribution due to
the quantum nondissipative inertial term that I expect to
be small [6]. The crossover as a function of temperature
from constant quantum to linear classical relaxation
previously has been observed in several experiments.
Balancing the quantum and classical relaxation rates in
Eq. (7) predicts the crossover temperature T ' —j~l2.
Furthermore, if a consistent study of S as a function of j,
can be made, I predict that the quantum ~j, dependence
dominant at high critical currents will cross over to
classical 1/j, behavior in samples with smaller j, , and
this will occur at j,* —T ~ . In addition, a crossover as
a function of j, from a dissipative to a nondissipative
regime can take place at low T and j,. [see Eq. (7)].
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The dissipative quantum relaxation regime predicted by
Eq. (7) and a hint of crossover to classical relaxation as
a function of j, might have already been observed in
recent experiments on YBCO single crystals at millikelvin
temperatures. The samples were irradiated with heavy
ions to create a forest of columnar defects with density
characterized by B~ = @o/d2 (where d is the average
distance between the defects), and the magnetization
relaxation has been measured [5]. In Fig. I I display a
smooth interpolation between the quantum and classical
limits of Eq. (7) and fit it to the S(j,) data that I extracted
from the experiment. At higher j, the data clearly show a
counterintuitive increase in S as the pinning strength (j,.)
is increased, which I could not explain by any classical
mechanism, in agreement with the dissipative quantum
tunneling predicted by Eq. (7). The Ilattening out at
low j, is also consistent with the crossover to classical
relaxation, as discussed above.

Although this quantum relaxation calculation, Eq. (7),
appears to explain the qualitative feature of the intrigu-
ing increase of 5 with j, observed in the experiment of
Ref. [5], an important puzzle remains. My calculation
is only strictly correct for the regime where the pinning
is dominated by individual defects. While this regime is
appropriate to the range of fields explored in the experi-
ment of Ref. [5], it is difficult to simultaneously reconcile
the observed increase of j, (pinning strength) with the in-
creased density of pins (B@) in this single defect pinning
regime. It is clear that in Eq. (7) the length scale b and
pinning energy U = b @oj,/c should be interpreted as the
effective pinning length and pinning energy, renormalized
by Aux line interaction and temperature. However, it is
not at all clear how these renormalized quantities are af-
fected by the density of columnar defects, i.e., their de-

iy $03

60

FIG. 1. Relaxation data at T = 0. 1 taken from Ref. [5],
plotted as a function of j, The high (low) j, pair of points
corresponds to data in SBG, B « B~ (WBG, 8 && B@) regimes
for B@ = 1 and 2 T samples, respectively. The solid curve is a
smooth interpolation between the quantum and classical limits
of Eq. (7), fit to the experimental data. The inset shows the j,.

steplike behavior as a function of B predicted by the existence
of SBG and WBG regimes, consistent with the experiment.

pendence on 8@. In the absence of a detailed theory of
this dependence, I take the increase with 8@ of the renor-
malized pinning energy U (j,.) appearing in Eq. (7) as an
experimental fact (that requires further investigation). As-
suming that the change in density of defects has a weaker
effect on b than the observed increase of j, , Eq. (7) pro-
vides a reasonable explanation for the counterintuitive ex-
perimental observation of the increase of 5 with j,

I now turn to the effects of interactions between Aux
lines on the above picture. In examining the role of
interactions on pinning in the Bose glass phase I have
found two quite distinct pinning mechanisms, for 8 ( 8@
and 8 ) 8@ to which I refer as strongly pinned Bose
glass (SBG) and weakly pinned Bose glass (WBG), re-
spectively. For 8 ( B~ the columnar defects outnumber
the fIux lines, and, therefore, all the vortices are strongly
pinned by individual defects. The pinning energy in this
case is of order U = eolog(b/g) and j,2 = Uc/@nb As.
8 is increased past 8@, a competition between pinning
energy and magnetic repulsion ensues, resulting in lower-
ing of the effective pinning potential. The additional Aux
lines can attempt to double occupy the already occupied
columnar defects, thereby gaining condensation energy U,
but raising the interaction energy by V;„, = 2eo log(a/b).
In these experiments a = 400 A, b = 70 A. , the magnetic
repulsion dominates, and the additional Aux lines go into
the interstitials in between the vortices localized on the
columnar defects. Hence for 8 ) 8@ the weakly pinned
interstitials fIux lines are localized by magnetic repul-
sion from the vortices strongly pinned by the columnar
defects. Although the pinning potential experienced by
the interstitial vortices is not isotropic in the ab plane, be-
cause the potential is z independent, the Bose glass phase
is expected to persist for 8 ) 8~, as was first argued in
Ref. [3]. I expect this WBG phase, however, to have a
significantly reduced critical current j,. l relative to that of
the SBG phase.

The steplike behavior of j„shown qualitatively in
the inset of Fig. 1, has the necessarily experimentally
verifiable consequence that the spatial linear field profile
of the Bean state will be replaced by a two slope
configuration corresponding to j, ~ and j,.2, with the
change in the slope occutTtng at x(B~). Measurements
of the hysteresis loop already find j,(B ( B@) =j,2.».
j,(B ) B~) = j,. l in strong support of the existence of
distinct SBG and WBG pinning regimes [5].

I further observe that in the SBG regime both 8@ = l
and 2 T samples studied in Ref. [5] exhibit a temperature
independent relaxation rate up to 4 K, giving additional
evidence for the quantum creep mechanism. On the other
hand, in the WBG regime, with significantly lower j, , the
relaxation rate is approximately linear with temperature
down to T' = 0.4 K, manifesting a classical relaxation
mechanism. This is in qualitative agreement with Eq. (7),
which gives a quantum, T-independent rate for high j,.
and a classical, linear in T rate for low j,
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Another striking observation is the strong suppression of
S over a narrow range of B around B = B@. The location
of the dips in S suggests that the experiment is the first
observation of the Mott insulator phase first discussed in
Ref. [3]. In this regime the number of flux lines matches
the number of columnar defects, and due to magnetic
repulsion between vortices the hopping rate is expected to
be significantly reduced. Although the qualitative picture
is clear, a more thorough understanding of the interactions
is needed to describe S near B~ in detail.

I now examine the behavior of j, as a function of the
columnar defect density B~. I note that j, is observed
to approximately double as B@ is increased from 1 to 2
T. This is expected, since the higher density of columnar
defects increases the average pinning strength by the
ratio of attractive pinning area to total area (b/d)
B@. Flux line interactions lead to another source of B~
dependence in j,. Since in the absence of defects the
Aux lines would like to form an equally spaced lattice,
in order to take advantage of the columnar defect, a
fiux line must displace an average distance d/2 from its
otherwise preferred position. Hence the effective energy
gain from localizing on the defect is reduced by the
increase in the repulsion with (A/a) other lines to U, ff
U —Beo(d/2a) (A/a) = eo(1 —BB /4B~B, ~) (for B &&

B~, a* & A). This dependence predicts an additional
slower increase in j, with B~ and leads to a critical
field B* = 2QB~B,~/6 above which the effective pinning
strength vanishes. In the case a* ~ A, B* = B~ [3].
Turning the argument around, I therefore expect a critical
B~(B) density of defects for a realization of a true Bose
glass phase.

In summary, I have discussed a theory of magnetization
relaxation at ultralow temperatures in a Bose glass super-
conductor, predicted a quantum to classical crossover as
a function of j, as a new signature of quantum relaxation
in addition to the usual T-dependence signature, and have
argued for the existence of SBG and WBG distinct pin-
ning regimes. I have examined recent experiments, and
found that they can be consistently explained in the con-
text of the developed picture.
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Note added. —After this paper was submitted for pub-
lication, I learned of the existence of the paper by V.
Vinokur, Physica (Amsterdam) 200A, 384 (1993), which
also explores quantum vortex tunneling from a columnar
defect. My findings are in disagreement with Vinokur s,
who finds that the relaxation rate (in the regime consid-
ered here) is independent of j„inconsistent with experi-
ments of Ref. [5].
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