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Transition from Compact to Fractal Islands during Submonolayer Epitaxial Growth

G. S. Bales and D. C. Chrzan
Computational Materials Science Department, Sandia National Laboratories, Livermore, California 94551-0969

(Received 3 February 1995)

A linear stability analysis is applied to the study of the compact-fractal island morphological transition
during epitaxial growth. The analysis includes the diffusion mediated interaction between islands within
a self-consistent mean-field theory. A scaling form is derived for the length of the island edges. Results
are confirmed by comparison with kinetic Monte Carlo simulations.
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Single atom high islands which form during the early
stages (submonolayer) of epitaxial growth exhibit mor-
phologies which range from ramified structures to com-
pact polygonal shapes. For example, scanning tunneling
microscopy images of Au on Ru(0001) grown at room
temperature reveal fractal islands. Deposition of Co on
the same substrate produces compact triangular islands
[1]. Similarly, ramified islands are observed for Pt on
Pt at low temperature, and compact islands are found for
higher temperatures [2]. In this work the dependence of
the island morphologies on externally controlled growth
parameters is addressed. It is important to understand this
dependence, since these islands form the template upon
which all further growth proceeds [3].

The observation of ramified island growth has been
understood [1] by comparison with the simplest "hit and
stick" model of diffusion limited aggregation (DLA) [4].
In this model, a particle diffuses on the substrate to an
island from far away and sticks at the first point of
contact with the cluster. The fractal dimension for a DLA
cluster is identical to that measured for islands of Au on
Ru(0001) [1].

However, the growth of islands during epitaxy differs
from DLA in two very important respects: (1) Atoms
which diffuse to the island relax to a lower energy site, e.g. ,

by diffusion along the edge of the island (edge diffusion).
As the rate of relaxation increases relative to the rate
at which atoms diffuse Io the island, a morphological
transition occurs from ramified island growth to compact
island growth. For an isolated island this competition
is well understood [5,6]. (2) The islands grow in the
presence of other islands on the surface and, therefore,
compete for the available diffusing monomers. The effects
of this complication on the island morphology are not yet
well understood. In fact, there is disagreement in recent
literature [7—9] as to the dependence of the transition on
the growth parameters.

In this paper, the morphological transition is studied
by considering the shape stability of a compact island.
A linear stability analysis, similar to that applied to
the study of the Mullins-Sekerka instability [10], is
used to study the stability of a circular island with
respect to infinitesimal morphological fluctuations. In

contrast to a traditional stability analysis [5,11], the
environment surrounding any particular island on the
surface is changing with time during the growth process,
due to the presence of the other islands. In this work,
therefore, the stability analysis is combined with a self-
consistent mean-field theory which describes accurately
average properties of the entire surface [12]. Based on
this novel approach and the results of kinetic Monte Carlo
(KMC) simulations a new scaling law is formulated, and
the disagreements in the literature reconciled.

During the growth process, a competition develops
between the nucleation of new islands on the substrate
and the capture of monomers by already existing islands.
This competition leads to a simple relation between the
average distance between islands 4, the deposition flux F,
and the monomer diffusion constant D, namely,

where the exponent y depends on the critical nucleus size
[13]. The current work focuses on irreversible growth
in which a dimer is stable and g = 1/6. Similarly, it
is shown here that the balance of the competing effects
of ramified growth and smoothing by edge diffusion also
leads to a simple scaling form. Near the transition to
ramified island growth the fraction n, of deposited atoms
that are at the edge of an island obeys

n

where I measures the rate at which atoms diffuse around
the edge of the island and f is the scaling function.

Kinetic Monte Carlo simulations based on simple
energetics provide a useful tool to investigate scaling
relationships such as Eqs. (1) and (2). The current
simulations are performed on a square lattice. The
monomers hop on the bare substrate at a rate of hD =
ve t'~', where v is the attempt frequency, P is the
reciprocal temperature, and F, is the energy barrier to
monomer diffusion on the substrate (note that D = ho/4).
Attachment of monomers to other monomers and existing
islands is assumed irreversible. Adatoms at the edge of
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an island (edge atoms) hop along the edge with a rate
h, = ve ~"~, where v is the attempt frequency and n
is the number of lateral nearest neighbors. There is no
additional barrier associated with downward interlayer
diffusion.

Typical results are shown in Fig. 1 for three differ-
ent temperatures and a Ilux chosen such that D/F =
1 x 10' . At low temperatures, the edge diffusion rate
is very low, and the islands are ramified. At high tem-
peratures, the islands grow while maintaining a compact
structure. At intermediate temperatures, the islands as-
sume a structure somewhere in between the two extremes.
One learns two important facts from these simulations.
First, this simple model displays a morphological tran-
sition between compact and fractal islands. Second, the
morphological transition between compact and fractal is-
lands is not abrupt, but occurs gradually as the tempera-
ture is changed.

Simulations provide the exact numerical description of
the growth of a thin film (within the assumed dynamics).

However, in order to understand the scaling behavior, one
needs an analytical description of the competition between
the ramifying inhuence of growth, and the smoothing
inhuence of edge diffusion. An exact theory of this
competition is not yet attainable as it requires knowledge of
the positions and shapes of aO islands and monomers on the
substrate. Hence, to make progress, the current work treats
the shape stability of a circular island of radius R(t) as it
grows in the presence of the average density of diffusing
monomers. The presence of the other islands is accounted
for by replacing the environment surrounding the island by
that of the average system. The properties of that average
system are computed self-consistently from a set of couple
mean-field rate equations [12].

The stability of the compact circular shape of the island
is studied by examining the time dependence of small
perturbations to the circular shape. The radius of the
island is replaced by

r, (P, r) = R(t) + e (t)e'

where R(t) is the unperturbed island radius, e (t) is
the amplitude of the perturbation (e (( R), and I is a
positive integer. The circular island is morphologically
unstable if e (t) increases more rapidly than R(t) To.
first order in e (r)

&m ~ &I
I

= ~m
dt R)

(b) 4

where the relative stability function co is determined by
solving the diffusion equation for the monomers in the
vicinity of the island [5,12]. It is given by

~ D(.) K (R/e) r, , K. (R/r)—
Kp(R/$) R K (R/$)

Kp(R/g) n
K (R/e)
nr

, m'(m' —1).

K is a modified Bessel function of order m and 0, is the
atomic area. The "diffusion length*' se is given by

= o-(n) + o-„(N+ (n)),

FIG. 1. Kinetic Monte Carlo simulations of irreversible island
growth for D/F = 1 X 10'p, E,/E, = 1.8 and (a) pE, = 20,
(b) pE, = 15, and (c) pE, = 10. The lighter shades of gray
represent atoms deposited at early times, while the darker
shades represent those deposited at later times.

where N is the number density of islands, (n) is the av-
erage density of monomers on the surface, cr„is the av-
erage "capture number" which measures the rate at which
the islands capture the monomers on the surface, and ~ is
proportional to the rate of dimer formation [12,14]. Note
that (n), N, s, o., and o.„aretime dependent quantities
which are computed numerically from the rate equations
[12]. The parameter I represents the rate at which the
islands relax toward their equilibrium shape. The con-
tinuum approximation for the edge diffusion rate j, is
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given by j, = —I B~(s)/Bs where a(s) is the local ra-
dius of curvature at a position on the edge given by the
arclength s [15].

The morphological stability of the circular island is
described completely by the stability function. If cu

0, the perturbation grows faster than the radius of the
islands. If co ~ 0, the perturbation decays. The solution
to the equation cu = 0 defines a critical radius at which
a circular island becomes unstable to morphologicalfluctuations.

It can be shown that co is a function of four parame-
ters: R, I /D, D/F, and the coverage 0 = Ft The. lat-
ter three are controlled externally. The stability function
vanishes for two radii, Ri and R2 where R2 ) R~. These
roots are shown in Fig. 2 as a function of coverage forI = 3, the first mode to go unstable. A circular island is
unstable to the perturbation if its radius is between Ri and
R2. If R ( R], edge atoms are able to sample much of the
island edge and find a lower energy site. Hence the com-
pact island is stable. If R ) R2, the addition of atoms to
the island from on top of the island, which stabilizes the
compact shape [11],becomes comparable to the addition
of atoms from the bare substrate.

Also shown in Fig. 2 is the average radius of the is-
lands, R(0). Note that R becomes greater than Rt at
about 0 = 0.01 monolayer for I /D = 5 X 10 6. Ram-
ified islands are predicted at any higher coverage. For
I /D = 5 x 10 s, however, R is always less than R~ and
the islands remain compact. It is useful to define a criti-
cal value for I when R(0) is equal to Rt. In other words,
I = l, (6t) when the stability function evaluated at R(0)
is zero. One can then study the dependence of I,.(0)
on the growth parameters. In Ref. [12] it is shown that
for compact islands, R/g is independent of the ratio D/F
in the "scaling regime" (for all but very low coverage).
Terms in Eq. (5) which depend on R/s become simple

functions of the coverage 0. Furthermore, R —(D/F)'/6
and (n) —(D/F) ~/s Neglecting the contribution from
deposition on top of the islands [fourth term in Eq. (5))
and solving cu„,(R = R, I = I,.) = 0 for I,. gives

(7)

ChO: g

O
+

Q 0 0P 0
0

0

where y(0) is independent of the growth parameters I /D
and D/F. At a given coverage, if I ) I,. one observes
only compact island shapes but if I ( I,, the islands have
a ramified appearance.

Equation (7) is difficult to apply directly to data anal-
ysis. If I is close to I, , it is difficult to determine by
visual inspection if the island shapes have become unsta-
ble. For I' near I, the island edges are rough (as a result
of kinetic roughening) and the emerging dendrites cannot
be distinguished from this roughness. Instead, consider
n, defined as (number of edge atoms)/(total number of
atoms in the islands) as a measure of the island morphol-
ogy. This quantity is plotted in Fig. 3(a) as a function of
I /D (I = I ove 1E where I'o —1) [16] for four differ-
ent values of D/F at a fixed coverage (8 = 0.2). At low
I /D the islands are fractal and n, is close to 0.9. The
transition to compact island shapes is continuous as one
increases I'/D.

The linear stability analysis applies in the vicinity of the
compact island shapes. In this limit it is known [12] that
n, —1/R —(D/F) '/6 In addition. , from Eq. (7) one
expects the curves to bend upward (with decreasing I /D)
at a value of I /D proportional to (D/F) '/3. Figure 3(b)
provides a test of this behavior. When scaled as predicted
by the linear stability analysis (horizontal axis) and the
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FIG. 2. Roots Rl and R& and the average radius R versus
coverage for D/F = 1 X 10'.
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FIG. 3. Fraction of edge atoms n, versus I /D
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rate theory (vertical axis), data from four different values
of D/F produce a single curve near the compact island
limit. This result provides proof of the validity of the
simple scaling form predicted by Eq. (2).

Equation (2) may be used to measure the edge diffusion
barrier from experimental data by locating the tempera-
tures po (as one varies the growth conditions) at which
n, (D/F)'t6 is some constant close to (but greater than) its
value in the compact island limit. Equation (2) predicts
that at these temperatures (I /D) (D/F)'t3 = const. This
is equivalent to

D
ln —= 3(E, —F,)po + const.

In conclusion, the compact-fractal island morphological
transition has been studied within a self-consistent mean-
field theory and KMC simulations. The scaling behavior
of the smooth transition is discussed, and a new scaling
form for the length of an islands edge is obtained and
verified by KMC simulations.
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Hence, the slope of the straight line predicted by Eq. (8)
gives a direct measure of the barrier to edge diffusion.
This relationship has been verified with the KMC simula-
tions. Note that application of Eq. (2) to the measurement
of edge diffusion rates does not require a direct compar-
ison with KMC simulations in contrast to the procedure
outlined in Ref. [8].

It must be noted that the current formulation applies only
when the experiment is in the irreversible growth limit.
For example, this approximation is reasonable for Au on
Ru(0001), as no Ostwald ripening was observed upon an-

nealing, but morphological relaxation was observed [1]. In
addition, the simple scaling form appears to be independent
of lattice symmetry assuming that the surface diffusion is
isotropic. Equation (2) is motivated by analyzing the sta-
bility of circular islands and then shown to be correct for
simulations of square islands. The lattice symmetry is re-
jected in the absolute magnitude of the edge diffusion rate
[9] which is proportional to the parameter I .

The theories of Pimpinelli, Villain, and Wolf [7]
and Bartelt and Evans [8] predict the relation I,/D-
(D/F) 't3. However, their length scale analyses ignore
the coverage dependence and cannot predict the change
in morphological stability with coverage. Zhang, Chen,
and Lagally predict I,/D —(D/F) t6 by (a) defining
an edge hopping length in which the motion of an edge
atom is limited only by direct collision with an incoming
monomer and (b) setting that length equal to a constant
[9]. Instead, the relevant edge hopping length describes
the length an atom will travel to find a lower energy
site (collision with the other mobile edge atoms). This
length, which scales as R~, should be compared with the
circumference of the island (i.e. , jtlt = R) to produce the
correct scaling form.
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