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Disorder-Induced Phase Transitions in Two-Dimensional Crystals
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We analyze a model of a two-dimensional crystal subject to a slowly varying random potential, and
find evidence for the existence of a zero-temperature phase transition via the appearance of isolated
dislocations above a critical disorder strength. The result is in contrast to earlier analyses of the model,
which found that the crystal is always unstable with respect to dislocation formation. The argument is
generalized to finite temperature and a phase boundary is derived. Molecular dynamics simulations of
a model electron crystal show strong evidence of this phase transition at low temperatures.

PACS numbers: 64.60.Cn, 05.50.+q, 05.70.Fh

It has long been appreciated that topological defects
can drive interesting phase transitions in two-dimensional
systems as a function of temperature. These defects,
which carry a topological "charge, " are bound together
into neutral pairs at low temperatures, and unbind above
the Kosterlitz-Thouless transition temperature [1]. For
the case of XY ferromagnets, these excitations are vor-
tices; for crystals, they may be dislocations or disclina-
tions [2,3]. The appearance of isolated defects in the
system generally changes the behavior of certain corre-
lation functions from power-law (quasi-long-range) to ex-
ponential (short-range) behavior.

An interesting question is whether this phenomen-
ology has an analog for zero-temperature systems sub-
ject to various strengths of disorder. This question arises
in a variety of situations: ferromagnets subject to random
fields and/or random exchange interactions [4,5], Joseph-
son junction arrays with positional disorder [6], and crys-
tal systems on disordered substrates [7,8] or with random
substitutional impurities [9,10]. In this Letter, we will fo-
cus on crystal systems, with particular emphasis on their
stability with respect to defect formation in the presence
of a slowly varying random potential. In particular, we
will give evidence, both analytical and numerical, that
one may have a zero-temperature transition in which iso-
lated dislocations appear above a critical disorder strength.
Specifically, we will show within our model that, in a fi-
nite size system, the number of locations at which it is
energetically favorable to include an isolated dislocation
in the ground state configuration vanishes below a well-
defined threshold disorder strength, and diverges above it,
in the infinite size limit. A generalization of the argument
to finite temperature may also be made, resulting in the
phase diagram presented in Fig 1. Analogous arguments
for the appearance of isolated disclinations for stronger
disorder [8(b)], as well as isolated vortices in XI' ferro-
magnets with appropriate random exchange interactions,
[5] may also be constructed. These generalizations will
be discussed elsewhere [11]. We note that recent numeri-
cal simulations have shown strong evidence of a disorder

induced disclination unbinding transition in the electron
crystal [8].

To further strengthen the case that such a transition
is possible, we have performed large scale simulated
annealing molecular dynamics simulations of electron
crystals in a slowly varying random potential. Our
results show behavior indicative of such a transition: the
positional correlation length rises sharply to above the
system size at a critical disorder strength (see Fig. 2),
and simultaneously one finds that the number of isolated
dislocations in the low-temperature configuration drops
sharply as the transition is approached from above.
Results for the ground state configurational energy also
show structure at the transition (see Fig. 3).

We begin with a continuum elasticity theory model
of the two-dimensional crystal, in which the energy to
create a strain field u;, (r) —= z(8;u, + ii, u;), where u is
the displacement field of the lattice and i, j = x, y is given
by

1
F- = — d r(2pu;z + A[u, kk

—6 p(r )] ).
We have taken our unit of length in the above to be
the lattice constant (i.e., ao = 1), and p, and A are Lame
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FIG. 1. Schematic phase diagram of the disordered two-
dimensional crystal as temperature and disorder strength
change. The solid line represents the phase diagram suggested
in this work. The dotted line is found in Ref. [9].
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FIG. 2. The positional correlation lengths of two-dimensional
electron solid in finite size systems at zero temperature where

is the number of electrons and N, is the number of
quenched impurities. Small symbols represent actual data,
while bigger symbols represent corresponding average values.
The correlation lengths rise sharply as the disorder strength
approaches a finite critical value from above. Samples with
N;/N~ = n, are not shown, because long-range behavior is
present in correlation functions and correlation lengths cannot
be defined.

coefficients. The quantity 6p represents a random field,
which for simplicity we assign an uncorrelated Gaussian
distribution, P[6p(r )] = (1/$27ro)e ~~ 'I / One can.
see in this model that the coupling of the strain field to
the disorder has the effect of forcing in fIuctuations in
the lattice density, which is proportional to uqq. This
model has been studied previously to describe a crystal
with random substitutional disorder [9]; it has also been
argued that the A ~ ~ limit of this model may be used
to describe the electron crystal in a random neutralizing
background [8,12,13].

The strain field in Eq. (1) may be separated into a
smoothly varying part @;, and a part due to dislocations
with cores at sites r, and Burgers vectors b, . The energy
of the resulting configuration turns out to be separable
in these two contributions [9]. The contribution to the
energy due to the presence of dislocations has the form

z . [b X (r —I. )]E„"+ d r6p(r) g '- - ~
', (2)4~ 1 rj

where K' = 4p, A/(2p, + A), and Eo" is the energy of the
dislocations in the absence of the disorder field [3,9].

Suppose one attempts to find the ground state for a
given disorder realization in a finite size system of area
A. We can first minimize the energy with respect to
the smooth displacements @;, without introducing any

FIG. 3. The configurational energy per particle of the model
system given in Eq. (6) in units of e2/ap. There is a cusplike
behavior coincident with the sharp rise of the positional
correlation lengths. The dotted lines are guides to the eye.

dislocations. We now ask: can one find a site in the
sample for which the introduction of a dislocation lowers
the energy? The energy to create a dislocation with
Burgers vector b in the absence of disorder has the form
Eo = (ICb2/16m)lnA for large A, where K = 4p, (p, +
A)/(2p, + A); to be energetically favorable, the interaction
energy between the dislocation and the disorder E~ [i.e. ,

the second term in Eq. (2)] must more than balance
this energy cost. For a given site, the ensemble of
disorder configurations will generate a distribution of
interaction energies P(E') that in the limit of large
sample sizes should be independent of the site location.
The probability distribution P(E&) may be computed
exactly by a functional integral, with the result P(E~) =
(1/ J'2vr q)e e~/2", with

(3)

The probability that a site is energetically favorable
for creation of a dislocation is then given by p =
f 'P(Et) dE&t,t which for large A is easily shown to
have the form p —e ~0 ~ = A " /' Since the
number of sites in the sample scales as A, the number
of sites for which it is energetically favorable to create
the dislocation scales as Ai —(b~/4 ~~, so that it will
only be possible to find sites for the dislocation in the
thermodynamic limit if

1 Ko-) o-, =—
4Z/) '

where we have set the Burgers vector to its lowest
nontrivial value, b = ao —= l.
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Several comments are in order. First, this is clearly
the generalization of the original Kosterlitz-Thouless ar-
gument [1] for entropy-driven phase transitions in two-
dimensional systems; one is balancing the probability due
to its energetics of a given lattice site being occupied by a
dislocation with the number of available sites. As in that
work, we must expect that screening by dislocation pairs
will affect the precise value of o-, . One also cannot rule
out the possibility that this phase transition will be cir-
cumvented by a first order phase transition, for example,
to a state with grain boundaries [2].

A finite temperature version of this argument may
be constructed by assigning a thermal probability
1/(1 + e ' ' ~"' ) that a site will be occupied by a
dislocation, even if the energy to do so is positive. The
probability that a given site will have a dislocation then
takes the form p = j™dE~P(E&)/(1 + e~ '+ '~~"' )
The behavior of this integral for very large areas may
be computed by breaking the integral up into two parts:

p = j dE'P(E' —Eo)/(1 + e i"~r) + f dE'P(E'
Eo)/(1 + eel~'r). We then expand the thermal factor
in powers of e~ / ' in the first term, and in pow-
ers of e ~/ 'T in the second. The resulting integrals
may be expressed as sums over complementary error
functions, from which one finds for the asymptotic

2 2
behavior p —e eo~~~ for /3' ) Eo, p —e ~ '+~ "~ for
Pri ~ Eo, with P =—1/kBT. The resulting asymptotic
behavior for large areas has the form p —A, with

2K

(5)

Recalling that the number of sites for the dislocation
scales as A, the probability of a site being occupied with
a dislocation for A ~ ~ diverges if n ~ 1. With Eqs. (4)
and (5), this defines a phase boundary illustrated in Fig. 1.

It is interesting to compare these results with earlier
work on this model. In particular, it was found in Ref. [9]
that the phase boundary is the dotted line illustrated
in Fig. 1. The results coincide precisely for the high-
temperature half of the phase boundary, but are markedly
different on the low-temperature side. Indeed, it was
found in Ref. [9] that the crystal state is always unstable
to dislocation formation at zero temperature, for arbitrarily
small disorder strengths. This result is based on a more
sophisticated renormalization group (RG) analysis than
the approach presented here; however, one can identify
precisely why the present work obtains different results at
low temperatures. The RG analysis relies on an expansion
in the fugacity e ' ', where F., is the core energy of
a dislocation. This expansion turns out to be necessary
to derive scaling relations for the system parameters,
and arises quite naturally in the RG approach. It has
been employed with great success in the theory of two-
dimensional melting in the absence of disorder [3]. Such

an expansion is completely equivalent in our approach
to expandjng in e ' ' ' jn particular, one js then led
to approximate the thermal factor 1/(1 + e~e"+e' ~"'r) =
e '+ ' /~' . Substituting this into our expression for
p, one obtains precisely the same result as in Ref. [9].
The failure of the fugacity expansion occurs because of
rare but non-negligible disorder configurations in which
F& is large and negative, leading to unboundedly large
values of e ~~0+ '~/ ' . However, this thermal probability
should never exceed 1 when properly normalized; thus,
the fugacity expansion breaks down when the fluctuations
in the dislocation energy due to disorder are larger than
those due to thermal effects. A very similar breakdown
in perturbation theory is known to occur for random field
Ising models [14].

In order to find the evidence of this zero-temperature
transition, we performed a simulated annealing molecular
simulation. We use a model electron system subject to a
random potential, whose configurational energy is given
by

Np e2 +p N;

—QQA, exp( —)r; —R, ( /$, )
l J

+ uniform neutralizing background,

where e is the electronic charge, r"; are the positions of
particles, R, are the positions of randomly quenched
impurities, N~ and N; are the number of particles and
impurities, respectively, and g; is the range of the ran-
dom potential. A neutralizing uniform background is
assumed to cancel out the diverging energy due to the
long-range electron-electron interactions. g; is fixed to
be $; = 0 3/A/AN; so . that most particles are under the
inhuence of the random potentials. The disorder strength
is characterized by A; and N, . In order to maximize the
competition between interaction and disorder, we take
A; = 0.805e~/ao which is roughly the energy cost in a
perfect triangular lattice when a particle is moved by a
half lattice spacing along one of its symmetry axes. In
our simulation, we tune N; to change the strength of the
disorder. We employ a periodic boundary condition and
use the Ewald sum technique to take into account the inter-
action with image boxes. To obtain the zero-temperature
configurations, we use the simulated annealing molecular
dynamics technique [8]. The discretized time step size
is 6t = 1.11 X 10 '3 s and (1—2) X 10~ steps are de-
voted to cooling-down processes in 15—30 temperature
decrements. Grain boundary formation occurred in some
samples at temperatures a little below the melting tem-
perature, but these essentially disappeared when such
samples were annealed more slowly.

The positional correlation is characterized as the cor-
relation function of the field pG(r;) = eG'" where G
are reciprocal vectors. In practice the correlation func-
tion is averaged over six G's with ~G~ = 4m/~3ao,
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which give peaks of structure factors. It is important to
determine such G's carefully because the positional corre-
lation length is sensitive to G. The positional correlation
length sG is determined by fitting the correlation function
to an exponential form. Figure 2 shows a rapid increase
of the positional correlation lengths as N;/N~ approaches
to n, = 0.075 ~ 0.005 from above. When N;/N~ ~ n„
either the correlation lengths are much longer than the
system size or the long-range correlation cannot be fitted
in an exponential form [15,16].

It is also interesting to observe the configurational en-

ergy per particle. Figure 3 shows there is cusplike be-
havior whose location is consistent with the position of
the positional correlation length divergence. This behav-
ior suggests a possible second order phase transition. The
argument provided in this paper is, however, analogous
to the Kosterlitz- Thouless dislocation-unbinding picture,
which usually predicts an infinite order transition. Fur-
ther investigation of this issue will be necessary.

In conclusion, we argue that there is a dislocation-
unbinding transition due to a quenched random potential
at a finite strength of disorder down to zero temperature.
The difference of our approach from the previous theoreti-
cal works resides on the failure of the fugacity expansion
on which previous RG studies are based. Numerical sim-
ulations of a model electron system in a slowly varying
random potential shows evidence of this transition.
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It was also found by inspection that isolated dislocations
appeared in the low-temperature configurations only for
n ~ n, . This phenomenology is consistent with the solid
line phase boundary of Fig. l and not with the dashed line.
However, as with any finite size simulation, one cannot
rigorously rule out the possibility that new physics will

appear at length scales much larger than can practically
be simulated, leading to qualitatively different results.
Nevertheless, it seems highly unlikely that there is a very
large length scale associated with the dotted line in Fig. l
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