
VOLUME 74, NUMBER 24 PHYSICAL REVIEW LETTERS 12 JUNE 1995

Parity Breaking Bifurcation in Inhomogeneous Systems
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Parity breaking instabilities of spatially periodic patterns are considered. In homogeneous systems
such instabilities produce steadily drifting patterns. Spatial inhomogeneities are shown to lead to
pattern pinning. The transition from pinned patterns to drifting ones may be surprisingly complex.
Examples are described containing infinite cascades of global bifurcations. The values of the bifurcation
parameter at which these occur obey a simple scaling law. The predicted dynamics provide a qualitative
understanding of recent experiments on binary fluid convection in an annulus.
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Primary instabilities in nonequilibrium systems such as
Rayleigh-Be:nard convection [1] or the Mullins-Sekerka
instability of a moving interface between two phases [2]
typically lead to spatial patterns, i.e., to convective rolls
or cellular interfaces. Most theoretical approaches to
describing such instabilities rely on symmetry considera-
tions. The system is assumed to be spatially transla-
tion and reAection invariant, and the first instability is
interpreted as a symmetry breaking bifurcation in which
the continuous translation invariance of the basic state
is broken to a discrete one but the reAection invariance
is retained [3]. When the instability parameter (e.g. , the
Rayleigh number) is raised farther, the periodic pattern
may itself become unstable in a secondary symmetry
breaking bifurcation in which the reAection invariance is
broken. Such secondary instabilities produce a nonsym-
metric pattern that travels either to the left or to the right,
depending on its asymmetry. Such bifurcations have been
observed in a number of recent experiments [4].

With periodic boundary conditions the normal form
describing this secondary instability is given by [5]

c=(p, —c)c, P=c, (1)
where c is the phase velocity of the bifurcating traveling
wave, tb is its spatial phase, and p, is the deviation of the
basic parameter from its value at the secondary instability.
The equation for c is a supercritical pitchfork so that for
p, ( 0 there is only the symmetric steady state c = 0
while for p, ) 0 there is a pair of nonsymmetric solutions
corresponding to waves propagating in opposite directions
with speed c = ~~p, .

Perfect translation invariance is rare, however, and spa-
tial inhomogeneities (or distant sidewalls) may alter the
above picture and introduce qualitatively new behavior.
That this is likely is indicated by the fact that pure
traveling waves can only exist in systems with perfect
translation invariance. In this Letter we propose a two-
dimensional normal form that describes the consequences
of broken translation invariance on the secondary symme-

try breaking instability of a periodic, reflection-invariant
state and describe some of its dynamical properties.

The proposed normal form is a perturbation of (1)
such that the reAection symmetry (c, @)~ (—c, —P) is
preserved but the translation invariance @ P + 0 is
broken. With periodic boundary conditions we obtain to
leading order [6]

c = (p, + leos@ —c)c+ rising,

P = c —csin@,
(2a)

(2b)

where (8, g, e) are parameters proportional to the ampli-
tude of the spatial inhomogeneity, assumed to be small
and with spatial period 2~. A systematic derivation of
(2) will be given elsewhere [6], and shows that in gen-
eral the sines and cosines have to be replaced by arbitrary
odd and even 2'-periodic functions, i.e., in writing (2) we
have only retained the leading terms in the Fourier expan-
sion of these functions.

The breaking of the translation invariance is responsible
for the appearance of two fixed points of the form (c, P) =
(0, 0), (0, vr) corresponding to steady rolls with a preferred
phase. In the following we refer to these as pinned states
and denote them by SSO . These refIection-symmetric
solutions are always present and take the place of the
circle of solutions (0, tb), @ H [0,2'), in the translation-
invariant system. Additional fixed points of the form
(co, @o) are sometimes present. Since @ is fixed, these
solutions also represent steady rolls; however, because
co 4 0 these rolls are no longer symmetric under reflection.
At most two such nonsymmetric fixed points P— can be
present. The propagating states are described by limit
cycles in the system (2). There are in general three
types of such limit cycles, those that are born in Hopf
bifurcations from SSO or from P- and are characterized
by oscillations in the phase @, and the rotation waves
(RW) for which P increases monotonically with time. The
former thus describe a symmetric or nonsymmetric roll
pattern that alternately moves left and right, while the latter
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SSo and SS . As this happens the number of turns
made by Wo around SS and its two satellite fixed
points P— increases monotonically. The values p, ; at
which the i th connection forms accumulate at p, sN =
0.12763063 at which point a pair of limit cycles (one
stable, one unstable) are born, surrounding SS and P
At p, = 0.1283 the inner (unstable) limit cycle forms a
"figure eight" connection with SS and thereafter splits
into two small limit cycles surrounding P- followed
by the disappearance of the unstable oscillations in a
subcritical Hopf bifurcation at p, = 0.131, much as in
the Takens-Bogdanov normal form with Z2 symmetry
[8]. Next, at p, = 0.164 694, two pairs of RW are
born in saddle-node bifurcations, the ones with larger
mean ~c~ being stable [Fig. 2(a)]. At p, = 0.164938 the
unstable RW form a pair of homoclinic connections
connecting SS0 to itself and subsequently produce an
unstable limit cycle surrounding the remaining stable limit
cycle [Fig. 2(b)]. The latter is then destroyed in a second
saddle-node bifurcation at p, sN = 0.16526453. As this
value is approached from above an infinite sequence of
global connections again takes place, all of which now

0.5

0.0

-0.5

coexist with the stable RW. Thus with increasing p, the
complexity again unravels, leaving essentially the picture
for p, ~ —0.4 except that now both SSO and SS are
unstable and a pair of stable RW is present.

Because the cascade of global bifurcations precedes the
saddle-node bifurcation that produces the pair of limit
cycles, we expect that the number N(p, ) of connections
formed by this value of p, is given by

N(p) = (3)
QPsN P

where K is a constant. The factor 2 is included since each
rotation of Wo about SS and P- produces two global
connections. We count the rotations by the intersections
of Wo with the plane g = {(c,P)~P = m. , c ~ 0), and
denote by p, ; the value of p, at which the ith connection
forms. Thus, for large i,

1
@~+i pi =

+ (psN pi)

P(x, t) = Acosk[x + P(t)] + Bc(t) sink[x + P(t)],
(5)

where A, B are the amplitudes of the symmetric and non-
symmetric components of P, k is the wave number, and
c(t), @(t) solve (2). In Fig. 4 we show a stable limit cy-
cle at p, = 0.1647 coexisting with a stable rotating wave.
The limit cycle corresponds to a direction-reversing wave

It follows that as i ~, p, ; p, sN, and an infinite
number of connections must take place. We have checked
these predictions by computing the number n (= N/2) of
intersections of Wo with X and plotting I/n2 as a function
of p, near p, sN. As shown in Fig. 3 the result verifies the
prediction (3), and can be used to deduce the values of
p, sN (= 0.127 630 63) and of K (= 0.200 397 9).

In order to describe the appearance of the solutions
identified above it is helpful to represent them in the (x, t)
plane using the representation [9]
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FIG. 2. Same as for Fig. 1 but for (a) p. = 0.1648 and
(b) p, = 0.1652. Heavy (broken) lines indicate stable (unsta-
ble) periodic orbits.

FIG. 3. Plot of 1/n against p, near p, = p, sN.
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FIG. 4. Stable solutions in the (x, t) plane using the represen-
tation (5) with A = 2.5, B = 2.5, k = 1.0, showing (a) a sym-
metric oscillation, and (b) a rotating wave, both at p. = 0.1647.

(i.e., a wave that travels first to the left and then to the
right, with zero net displacement), although the mecha-
nism for its creation is quite different from that discussed
in Ref. [10]. The RW propagate nonuniformly though
always in the same direction, undergoing regular inter-
vals of stasis followed by fast propagation. This behav-
ior is typical of RW, the periods of stasis arising because
the trajectory visits a neighborhood of the saddle point
SSO. With increasing p, the amplitude of the phase veloc-
ity modulation decreases and the solution approaches the
translation-invariant result.

Although for other choices of parameters simpler sce-
narios may apply, the behavior we described is likely to
be typical of the effects of spatial inhomogeneities on
the bifurcation to traveling waves from a circle of steady
states. As an application of the theory we mention the
experiments of Ohlsen et al. [11,12] on binary fluid con-
vection in an annular container. These authors find that
the transition from traveling wave convection to steady
convection is not sharp, even though three-dimensional
effects are apparently absent. For larger p, they see the
signature of the ~p, dependence of the phase speed char-
acteristic of this transition in a translation-invariant sys-

tern. Near p, = 0, however, this signature is washed out,
and they find slowly traveling patterns even for p, ( 0.
These patterns travel in fits and starts, with long periods
of stasis separating propagation (cf. Fig. 7 of [12]),much
as in Fig. 4(b). Moreover, when p, is large enough that

P = ct, Eq. (2a) shows that the phase speed c satisfies
the approximate equation

c = (p, —c ) c + g sinct + Bccosct. (6)
It follows that the phase speed will be modulated at
leading order with two frequencies, namely, ~p, and

2~p, . Modulation of the phase speed with just these two
frequencies is observed in the experiments (cf. Fig. 4 of
[12]). The present theory thus supports the interpretation
of the experimental observations in terms of azimuthal
inhomogeneities in the apparatus.
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