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Photonic de Broglie Waves

Joseph Jacobson,* Gunnar Bjork, Isaac Chuang, and Yoshihisa Yamamoto'

ERATO Quantum Fluctuation Project, Edward L. Ginzton Laboratory, Stanford University, Stanford, California 94305
(Received 25 January 1995; revised manuscript received 10 April 1995)

In quantum optics an ensemble of photons is treated as a Bose condensate which has a de Broglie
wavelength given by Ao/N where Ay and N are the wavelength and average number of constituent
photons, respectively. We describe an interferometer which is capable of measuring this de Broglie
wavelength. We show specifically that a coherent state input has a de Broglie coherence length
proportional to 1/+/N. Finally we show that the interferometer is Heisenberg limited in sensitivity
(Admin = 1/N) and thus forms a new class of interferometers operating at the fundamental quantum

limit.
PACS numbers: 42.25.Hz, 42.50.Ar

The advent of quantum mechanics requires us to take an
operational view of nature in which we describe properties
of a system in terms of measurable observables. In this
paper we show that the measured wavelength of an object
is, fundamentally, dependent on the internal structure of
the object being measured. In general, the wavelength is
measured by splitting an incident object into a coherent
superposition of states and interfering those states with
each other as a function of phase delay. In order to treat
the case of incident objects with internal structure we
introduce the concept of “effective” beam splitters which
imbue an effective internal structure such as binding
between constituent parts of the object. In a simple case
we show that such an effective internal structure may
have dramatic effects, for instance, that incident states
of definite energy do not necessarily have a well-defined
de Broglie wavelength. We then extend this concept
of effective beam splitters to construct an interferometer
which is capable of measuring the de Broglie wavelength
of an incident state of photons (light packet) as a whole.

Consider an interferometer for molecules as has been
recently demonstrated [1]. The output of the inter-
ferometer oscillates as a function of the path length
difference. The oscillation period is a measure of-the
molecule’s de Broglie wavelength. In this paper we were
motivated by considering what happens to the measured
wavelength as a function of the binding energy of the
molecule as follows: Assume an iodine molecule I, with
mass =~=2m; (ignoring the mass contribution of binding).
The de Broglie wavelength of the molecule, which we
expect to measure, is given by h/2mjv where v is the
molecular velocity. However, in the limit that the bind-
ing energy between the two I atoms goes to zero the
molecule’s constituent atoms become disassociated and
we effectively have two separate I atoms each with de
Broglie wavelength 4#/m;v incident on the interferometer.
In this case we expect the measured wavelength to indi-
cate the de Broglie wavelength of the individual atoms.
At what point does the molecular object make a transfor-
mation from a wavelength of A/2m;v to a wavelength of
h/mpv?
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We may construct a simplified model of the molecular
interferometer by considering a modified Mach-Zehnder
interferometer with effective beam splitters [denoted by
E in Fig. 1(inset)] which imbue an effective binding to
the constituent particles of the incident state. The input
state is written as |¢g) = |2,0). The first label of the ket
denotes the number of constituent particles incident on the
horizontal port and the second label indicates the number
of constituent particles incident on the vertical port. In our
model the interaction Hamiltonian for the effective beam
splitter is given by

By = ih %X[&W) — bta]
+ m%a - l@th? - Bta®],

where & (at) and b (b') are the lowering (raising) boson
operators corresponding to the different paths of the inter-
ferometer. The unitary time propagation operator for the
beam splitter is given by Uy, = e~ #»//% A 50/50 beam
splitting is achieved for a propagation froms = Otot = 1.
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FIG. 1. (Inset) A modified Mach-Zehnder interferometer with
effective beam splitters. (Plot) The expectation number {(ata)
as a function of the phase ¢ for various values of the parameter
x- (x =1, no binding) corresponds to a beam splitter which
splits incident composite objects into constituent parts. (y = 0,
tight binding) corresponds to a beam splitter which does not
split incident composite objects into constituent parts. The
incident state is |2, 0).
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X is a parameter on [0, 1] which changes the beam splitter
continuously from one which imbues an effective binding
(i.e., does not split composite objects into constituent parts;
X = 0) to one which does not imbue an effective binding
(i.e., normal beam splitter which does split composite ob-
jects into constituent parts; y = 1).

The phase shift operator is written simply as the free
space propagator for one arm of the interferometer and is
given by

f]¢ _ e~iwoa*az _ e——[d)&*&’ )

where w( is the frequency of the constituent particles
(= 2mc/Ag) and Al is the path length difference. ¢ =
wolAl/c.

Figure 1 shows the output (expectation value of the
particle number {(ata)) as a function of the phase ¢ for
several different values of the functional splitting param-
eter y. It may be discerned from the figure that as the
beam splitter is transformed from a normal beam splitter
which splits incident composite objects into constituent
parts (x = 1, no binding) to an effective beam splitter
which does not split incident composite objects into con-
stituent parts (y = O, tight binding) the measured wave-
length is halved (e.g., the measured frequency is doubled).
We note that at intermediate “binding energies,” despite
the fact that the incident object has a well-defined energy,
the wavelength is nonetheless ill defined.

Recently, Davidovich et al. [2] described an ingenious
quantum switch for creating a superposition between an
arbitrary incident state of light (e.g., coherent state light
packet) and the vacuum by means of a microwave cavity
whose resonance is dependent upon the state of a single
atom in the cavity. In this paper we use two such switches
to construct an interferometer for states as a whole.

Consider the schematic setup of Fig. 2. Here an atom
incident on two cavities controls the optical properties of
these cavities depending on whether or not the atom is in
the ground or upper state due to a state dependent index
of refraction. In our setup we consider a situation where
an atom in the upper state causes the incident photon
field to be reflected, whereas an atom in the ground state
allows the incident field to be transmitted. Consider an
upper-state atom incident on the first cavity. The atom is
subjected to a 77 /2 pulse which transforms an excited state
atomic wave function according to |e) — % (ley + lg))
and a ground state atomic wave function according to
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FIG. 2. Schematic of a Mach-Zehnder interferometer for
measuring the de Broglie wavelength of an optical pulse.
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lg) — % (lg) — le)). Simultaneously, a coherent state
la) = e~ 12P/2Y (a"/n11/?)|n) and the vacuum state |0)
are incident on the two optical input ports of the cavity.

We may write our incident wave function as |¢g) =
|a,0,e) in the basis |a,b,x), where a and b are the
two photon modes and x denotes the state of the atom
(e excited, g ground). Therefore after both the initial
7 /2 pulse and the first cavity we have the state |¢) =
% (10, a,e) + |a,0, g)), where the labels in the first ket
on the right side have been exchanged due to the action of
the excited state atom in the cavity in which the presence
of an excited state atom in the cavity causes the incident
photon state to be exchanged from mode a to mode » and
vice versa (i.e., reflected), whereas the presence of a ground
state atom causes no mode exchange (i.e., transmitted).

As before the phase shift operator is given by Eq. (2).
Thus after the initial /2 pulse, the first cavity and a
phase shift ¢ along mode a we have that the state if
given by |¢) = %(Io,a,e) + lae™?,0,g)), where we
have used e %%'%|q) = |qe~i®).

Using the rules above we have that after traversing the
rest of the apparatus (Fig. 2), consisting of another /2
pulse followed by the second cavity and finally followed
by a finishing 7 /2 pulse, the final state is given by

la,0,e) + |a,0,g) + [0,a,8) — 10, a,€)
+ lae™?,0,8) — lae™'?,0,¢)
—10,ae”®,e) — [0,ae'?, g)). 3)

1
|¢f>=5‘\/—§(

Consider the case where we measure the final state
of the atom to be in the upper state |¢). We have the
projected photon field to be

s = 5 (1,0 = 10,a) = lae™%,0) = [0,ae™'%)),
@

and the expected output at port A for our interferometer is
— &Nt =D cos(p + N sing)],
(%)

where here the average photon number N = |a|?>. As an
aside we note that if we were simply to trace over the final
atomic state, instead of conditioning the photon output
at port A on a specific atom state as we have done, the
output of the interferometer would be (¢ latalys), +
yrlatalys), = N yielding no interference.

The upper-state conditioned interferometer output of
Eq. (5) is plotted as a function of ¢ in Figs. 3(a, solid line)
and 3(b). In these plots the average photon numberis N =
100. From Fig. 3(a), solid line, we see that the output has
an oscillation period of 277 /N indicating a measurement of
the de Broglie wavelength (Ay/N) of the light packet as a
whole. We may understand the decay of the interference
for long phase delays [large ¢ —see Fig. 3(a), solid line]
by recalling that the de Broglie wavelength is given by the
mean number of photons, N, and therefore the “coherence

N
Ayrlatalys). = > [1
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FIG. 3. (a, solid line), (b) The expectation number {ata) out-
put of the de Broglie wavelength Mach-Zehnder interferome-
ter for an incident coherent state with average photon number
N = 100. (a, dashed line) An approximate model of the output
indicating the coherence length of the coherent state; see text.
(c, dashed) The expectation number output of the de Broglie
wavelength Mach-Zehnder interferometer for several different
incident Fock states. (c, solid) The ensemble average output
for 500 incident Fock states with photon numbers distributed
according to a Poisson distribution centered at N = 100.

length” of the light packet, Al., is a function of the
fluctuations in photon number, AN, which for a coherent
state is given by +/N. The dashed line in Fig. 3(a) is a
plot of the function 1—;’-(1 — ¢ VN¢ cosN¢) and indicates
that the coherence length of the coherent state light packet
is given approximately by Al. =~ c¢/wov/N.

Figure 3(b) shows that all of the wavelength compo-
nents of a coherent state light packet are rephased at peri-
ods of 277. This is to be contrasted with the revivals in the
Jaynes-Cummings system, where the revival time there is
dependent on the square root of the photon number, /N
[3]. We further note that, whereas there are also oscilla-

ot N o
(uslataatalyp. = ZAN + D+ e 2N sin*(#/2)

tions as a function of time delay in the Jaynes-Cummings
experiment, that experiment does not represent a measure
of the de Broglie wavelength, since the oscillation period
is proportional to the square root of the photon number
VN whereas in our case it is proportional to the pho-
ton number N directly. We do note that for less than or
equal to two photons three-level systems, such as the two
photon micromaser [4], may be treated as effective two-
level systems with a Rabi frequency proportional to N [5].
The effective Hamiltonian which governs these systems is
similar to the second part of our Eq. (1).

It is also interesting to consider the (normal beam split-
ter) Mach-Zehnder interferometer with Fock states (|n, n))
incident on the two input ports [6,7]. An exact solu-
tion of that interferometer generalized for arbitrary n [8]
finds that the probability that the difference in photo-
count between the two output ports is zero (i.e., the per-
fect coincidence rate) is given by P%(¢) = [L,(cos¢)T?,
where L, are the Legendre polynomials defined by
L,(x) = (1/2"n!) (d"/dx") (x* — 1)". While the Legendre
functions contain many frequency components and thus
cannot be considered a pure measure of the de Broglie
wavelength of the incident Fock states (recall that the
Fock state has only a single de Broglie frequency compo-
nent at nwy), such dual Fock input interferometers do fea-
ture components of their coincidence rate at the de Broglie
frequency. For the special case of single photon inputs
n = 1 the Legendre function becomes a pure cosine at the
de Broglie frequency.

Referring back to Fig. 3(a) it is interesting to note that
the decayed interference at large ¢ may be revived from
data which have already been recorded. This may be
accomplished by correlating the list of measured values
of photon number at exit port A with the total photon
number measured after the interferometer as the sum of
counts at A and B. We recall that the Fock state has
an infinitely long de Broglie coherence length, and thus
if we condition the recorded interferometer data on the
total photon count we may again recover interference even
though the conglomerate set of data shows a decay of the
interference. Figure 3(c), dashed lines, shows the output
of the interferometer for several incident Fock states each
of different photon number. Figure 3(c), solid line, is
the average interferometer output for a statistical mixture
of incident Fock states whose numbers are distributed
according to a Poisson distribution of average photon
number N = 100. We note the similarity with Fig. 3(a).

In order to calculate sensitivity we must calculate
fluctuations in the output signal. We have that the
expectation value for the number operator squared is

X [N sing sin(¢ + Nsing) — (1 + N cos¢)cos(¢p + N sing)]}. 6)
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Defining the interferometer signal as
(@ta)y+54 — (@'a), and the interferometer noise as

(ataatay, — <&*€1)ff, we may solve for the mini-
mum detectable phase shift A¢n;, by requiring that
signal /noise = 1.

Figure 4(a) plots A¢nin as a function of the phase ¢
for an incident coherent state with average photon number
N = 100. For a phase setting of ¢ close to zero the
interferometer is Heisenberg limited in sensitivity, such
that A¢pmin = 1/N for N > 1 and A¢nn = 1//N for
N < 1. Figure 4(b) shows that the ideal performance
is maintained from the region of much less than one
average photon to much more than one average photon.
This establishes that the device forms a new class of
interferometers operating at the fundamental quantum limit
of sensitivity [9].

The above result may be understood when recalling
that a normal interferometer when fed a single photon
in one input port and the vacuum in the other port is
both Heisenberg limited and standard quantum limited as
1/N = 1/+/N for N = 1. Therefore the incident coherent
state photon packet is in essence a single de Broglie
particle when incident on the special beam splitters of
the de Broglie wave interferometer. It is interesting to
note that in the case of the dual Fock state interferometer
[7], as we have mentioned, the coincidence rate there is
given by the Legendre polynomials. While, as noted,
these functions contain many frequency components, if
one chooses the operating point near ¢ = 0 the dominant
component becomes the de Broglie frequency and thus the
Heisenberg limited operation of that interferometer can al-
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FIG. 4. The minimum phase Ad¢n, measurable by the de
Broglie wavelength Mach-Zehnder interferometer for incident
coherent state pulses: (a) As a function of the phase ¢ for an
average photon number of N = 100. (b) For the optimal phase
setting as a function of average photon number N.
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so be understood in terms of the de Broglie wave
interferometer.

In conclusion, we have shown that wavelength is an
internal structure dependent quantity. Specifically, the
outcome of a wavelength measurement is dependent on
the interaction which takes place at the beam splitters
present inside the wavelength measurement apparatus.
The interaction at the beam splitters may be a property of
the interaction between constituent particles in an incident
composite object as in an interferometer for molecules or
in other bound boson or bound photon systems such as in
optical solitons or diphoton systems [10] or the interaction
may be a function of the beam splitters themselves as in
the case of the effective beam splitters introduced in this
paper.

We show that such effective beam splitters may be used
to construct a de Broglie wave interferometer for opti-
cal states as a whole. In the specific case of an coherent
state optical pulse we show that there is a finite coherence
length proportional to 1/+/N due to the uncertainty in pho-
ton number. Furthermore, there is a revival of the inter-
ference at phase periods of 27 due to the discrete nature
of the constituent number states. A calculation of noise
properties establishes that the interferometer is Heisenberg
limited in sensitivity and thus forms a new class of inter-
ferometers operating at the fundamental quantum limit.

*Electronic address: jacobson@sierra.stanford.edu
TAlso affiliated with NTT Basic Research Laboratories,
Atsugishi, Kanagawa, Japan.

[1] Ch.J. Borde, N. Courtier, F. du Burck, A.N. Goncharov,
and M. Gorlicki, Phys. Lett. A 188, 187 (1994).

[2] L. Davidovich, A. Maali, M. Brune, J. M. Raimond, and
S. Haroche, Phys. Rev. Lett. 71, 2360 (1993).

[3] P. Meystre and M. Sargent, III, Elements of Quantum
Optics (Springer Verlag, Berlin, 1991), 2nd ed., p. 356.

[4] L. Davidovich, J. M. Raimond, M. Brune, and S. Haroche,
Phys. Rev. A 36, 3771 (1987).

[5] M. Brune, J. M. Raimond, and S. Haroche, Phys. Rev. A
35, 154 (1987); H.1. Yoo and J.H. Eberly, Phys. Rep.
118, 239 (1985).

[6] J.G. Rarity, P.R. Tapster, E. Jakeman, T. Larchuck, R. A.
Campos, M. C. Teich, and B.E. A. Saleh, Phys. Rev. Lett.
65, 1348 (1990).

[71 M.J. Holland and K. Burnett, Phys. Rev. Lett. 71, 1355
(1993).

[8] J.M. Jacobson and G. Bjork (unpublished).

[9] A number of other classes of interferometers operating at
the Heisenberg limit of sensitivity are known. See C.M.
Caves, Phys. Rev. D 23, 1693 (1981); M. O. Scully, Phys.
Rev. Lett. 55, 2802 (1985); and Ref. [7].

[10] R.Y. Chiao and 1. H. Deutsch, Phys. Rev. Lett. 67, 1399
(1991).



