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Quantization of the Three-Dimensional Sinai Billiard
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For the first time a three-dimensional (3D) chaotic billiard —the 3D Sinai billiard —was quantized,
and high-precision spectra with thousands of eigenvalues were calculated. We present here a
semiclassical and statistical analysis of the spectra, and point out some of the features which are
genuine consequences of the three dimensionality of this chaotic billiard.

PACS numbers: 05.45.+b, 03.65.Sq

Most of the work in the field of "quantum chaos" is
related to systems with two degrees of freedom. This is
a natural tendency, since two-dimensional (2D) systems
provide the simplest, nontrivial examples of chaotic
systems. In this respect, 2D billiards were subjected to
thorough studies and served as good paradigms for the
understanding of time-independent chaotic Hamiltonian
systems.

The main motivation to extend the study of quantum
chaotic billiards to three dimensions is to examine the
semiclassical approximation: This approximation intro-
duces an inherent error of order 62 to the energy lev-
els (regardless of dimension) [1], while the mean energy
spacing is proportional to h", for systems with d degrees
of freedom [2]. This might prohibit the resolution of sin-
gle (high-lying) levels when d ) 2. In the absence of
a complete theory, it is important to test these ideas, to
check whether the semiclassical approximation can be re-
covered by suitable h expansions [3,4], and to evaluate
its usefulness for statistical purposes. Other motivation to
study 3D systems is the existence of "real world" systems
that cannot be reduced into 2D idealizations, and which
can exhibit some (classical and/or quantum) genuine 3D
effects. Also, for d ~ 2, classical systems can support all
the possible types of stability [2], including loxodromic
stability, which is absent in 2D systems.

Here we report about the numerical quantization and
spectral analysis of the 3D Sinai billiard. The results
will be presented with special attention to genuine 3D
features which affect the spectrum in whatever way it is
approached and analyzed. To the best of our knowledge,
this is the first study of 3D quantum chaotic billiards
which can match the studies of 2D billiards in accuracy
and extent. We study the 3D Sinai billiard, which is the
space inside a cube of edge L and outside an embedded
sphere of radius R, R ( L/2 (see Fig. 1). The classical
motion consists of a particle that is specularly reflected
from the sphere and from the cube's walls.

The 3D Sinai billiard was quantized using the Korringa-
Kohn-Rostoker (KKR) method [5—8]. The essence of the
method is to transform the Lippmann-Schwinger integral
equation into a particularly efficient system of linear equa-
tions. This is obtained by a special choice of the basis
functions and exploiting the symmetries of the problem:

the lattice periodicity and the spherical symmetry of the
inscribed potential. This reduces the numerical effort con-
siderably. The method heavily relies on a precise and
efficient calculation of "lattice constants" [6] which is
achieved by using the full Ewald summation technique
[7,9] in an optimal way. Details of the calculation will be
given elsewhere [10].

The Hamiltonian of the full 3D Sinai billiard is invari-
ant under the discrete group Oq of the cube's rotations
and inversion [11]. This group consists of 48 elements
and 10 classes, thus the quantum system suffers from geo-
metrical degeneracy, and the spectrum is composed of 10
independent spectra. In order to remove this "trivial" de-
generacy [8], we desymmetrized the billiard by using as
basis functions linear combinations of spherical harmon-
ics that transform according to one of the irreducible rep-
resentations (irreps) of Oh ("cubic harmonics" [12]). We
found a simple, nonrecursive method for determining the
cubic harmonics, using the singular value decomposition
(SVD) algorithm [13], and calculated the coefficients for
the completely symmetric (Al) and completely antisym-
metric (A 1') one-dimensional irreps. These correspond to

FIG. 1. Desymmetrized 3D Sinai billiard. The billiard is
indicated by boldface edges, and its corners are marked by
letters. Chained line: shortest isolated periodic orbit of length
I /~3. Double chained: isolated periodic orbit of length I /~2
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introducing Neumann and Dirichlet boundary conditions,
respectively, on the symmetry planes of the cube, forming
a desymmetrized element which is a triangular pyramid
(heavy lines in Fig. 1). It is important to emphasize that
the above decomposition of the Hamiltonian is crucial for
the feasibility of the calculation: had the Oh symmetry not
existed, we would have to deal with matrices larger by a
factor of 482.

We calculated few independent spectra of the billiard
for L = 1 and R = 0.2, R = 0.3 ~ Dirichlet and Neumann
boundary conditions were applied independently on the
sphere and on the symmetry planes. The spectrum for
R = 0.2 and Dirichlet boundary conditions on both sphere
and planes contained 2288 levels and covered the range
0 ~ k„s 200 (k2 =—E„). This is the largest spectral
interval obtained so far, and we shall refer to it as
R = 0.2 (DD). The other three spectra for the same
radius consisted of 1000 levels each. The spectra for
R = 0.3 contained 760 levels each. The completeness of
the data was checked by comparing the actual number of
eigenvalues N(k) to Weyl's law N(k) [14], in order to
detect either missing or redundant eigenvalues [15]. For

all the spectra computed, N(k) —N(k) oscillated about
0 with no systematic deviations, indicating with high
probability the completeness of the spectra. Other checks
will be described in [10]. Convergence checks of the
eigenvalues indicated an error of order 10 4 of the mean
level spacing.

In order to facilitate later analysis, it is instructive
to examine the three classes of the classical periodic
manifolds that exist in the 3D Sinai billiard. The first
class consists of generic, isolated, and unstable periodic
orbits (UPO's) that are 1D periodic manifolds. They
are typical to hyperbolic systems in any dimension,
and their total number proliferates exponentially with
their length [2] (see Fig. 2). For our billiard, they are
characterized by at least one nontangential collision with
the sphere. Second, we have the nongeneric, neutrally
stable, "bouncing ball" orbits [8,16—18], which bounce
only between symmetry planes and/or the walls of the
cube. For the specific case of the desymmetrized 3D Sinai
billiard, they are conveniently analyzed by considering the
integrable R = 0 case, in which the quantum density of
states is [10]
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where sine(x) =—sin(x)/x, and p, q, r E Z. The oscilla-
tory part of the first term [(p, q, r) 4 (0, 0, 0)] describes
contributions from periodic manifolds (tori) that occupy
3D volumes in configuration space. Each such manifold
is a (two-parameter) continuous family of periodic or-
bits of the same length. The other oscillatory contribu-
tions come from 1D and 2D manifolds of periodic orbits
that are confined to special lines and planes, respectively.
They involve collisions with comers and edges, and need
special care which will be given elsewhere [10]. It is in-

teresting to note that isolated and neutral periodic orbits
(ID manifolds) exist, and in Fig. 1 we show two of them.
They contribute to the fifth and sixth terms of (1). The
triangular face ABC supports an infinite set of 2D man-
ifolds that stay on it, as if it were a 2D triangle. The
number of bouncing ball manifolds grows as a power of
their length, in sharp contrast to the exponential growth of
the generic VPO s. For R ) 0, infinitely many periodic
manifolds are either completely or partially pruned. The
remaining periodic manifolds are "terminated with peri-
odic orbits that are tangent to the sphere. These tangential
manifolds constitute the third kind of periodic manifolds,
and they are of one dimension lower than the bouncing
ball manifold that they terminate. A comparison with the

1
D(x;k) —=-

0
dk' cos(k'x)d„, (k') . (2)

D(x; k) is expected to be peaked near lengths x that cor-
respond to classical periodic manifolds of the billiard
[16,17]. Substituting (1) into (2), we get that the contribu-
tion of a d-dimensional manifold to D(x; k) is O(k " ' ~).
This is also valid for the 1D UPO's [16]. Hence, the

situation in 2D Sinai billiard reveals a substantial differ-
ence: there is only a finite number of bouncing ball man-
ifolds in 2D (0 ~ R ( L/2) [8], in contrast to the infi-
nite number in 3D. Also, only in 3D does there exist
3D bouncing ball manifolds and 2D tangential manifolds.
These differences emphasize the almost unavoidable role
of the bouncing balls in 3D, which is a direct consequence
of the high symmetry of the original, nondesymmetrized
billiard. Thus the same high symmetry that allowed an
efficient decomposition of the Hamiltonian is responsible
for the prominent nongeneric bouncing ball manifolds.

In the sequel, we shall study the relations between the
quantum spectra and the classical periodic manifolds, in
light of the discussion above. The first step is to construct
the length spectrum, which is the (finite) cosine transform
of the oscillatory (wave number) density of states:

k
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FIG. 2. Absolute value of length spectrum for the R = 0.2
(DD) spectrum. Full line: k = 100, dashed line: k = 200. The
first eight bouncing ball orbits are indicated together with their
relative contribution to D(x; k). Lengths of UPO's are marked
by vertical bars.

(3)for P 0.
2

In particular, ps(R/L = 0.2) = 2 && 10 4 (( 1. We em-
phasize that this is a purely 3D geometrical effect due to
desymmetrization, and that the amplitude of this contribu-
tion to D(x; k) is k independent as for all other UPO's.

(leading, 3D) bouncing ball contributions are expected
to be much stronger [O(k)] than those of the UPO's.
This is to be contrasted with the O(k'~2) enhancement of
bouncing balls in 2D [16]. The length spectrum of the
R = 0.2 (DD) spectrum is plotted in Fig. 2 for k = 100
and k = 200, and the lengths of the bouncing ball orbits
for 0 ~ x ~ 2 are indicated together with their expected
k dependence. Lengths of the UPO's are also marked.
We clearly observe peaks for the predicted lengths of the
bouncing balls (with the possible exception of 1D con-
tribution at x = 2/~3 = 1.15 due to interferences), and
qualitative agreement with the predicted k dependence.
The bouncing balls are clearly seen to dominate D(x; k).
Our only hope to detect an UPO is to look in the domain
where the contributions are still fairly isolated, x ~ 0.6.
The shortest UPO, along the edge AF of Fig. 1, has a
length of 0.6 for the R = 0.2 case, which is very close
to the length I/~3 = 0.577 of the shortest 1D bouncing
ball. This can be better resolved for R = 0.3, because the
shortest UPO has a length of 0.4. In both cases, how-
ever, the expected contribution is not observed. A de-
tailed semiclassical analysis reveals that being on the axis
of an eightfold symmetry greatly diminishes the semiclas-
sical contribution of this orbit with respect to the situation
where desymmetrization is not imposed. Quantitatively,
the ratio is given by (P = R/L)

&2 —Pl
cs(p) = —2 —241 —2P —P4 kl —p

The above analysis shows that if one is interested in
the study of the generic contributions, it is imperative to
eliminate the nongeneric contributions in an accurate and
simple way, such as the one that was developed in [19].
Work along these lines is now in progress.

Spectral statistics: In Fig. 3 we present the nearest-
neighbor distribution P(s) for the R = 0.2 and R = 0.3
spectra. Both curves are similar to the GOE curve, but
for R = 0.2 there are noticeable deviations for small
s. These deviations are attributed to the bouncing ball
orbits described above. The better agreement for R = 0.3
is qualitatively explained by the pruning of bouncing
ball manifolds and the reduction of their measure as R
increases.

As a representative of the bilinear statistics we show
X (l) [20] for R = 0, 0.2, 0.3 and Dirichlet boundary con-
ditions on the planes (Fig. 4). The energy interval for
which X2(l) is calculated is taken to be 133 ~ k ~ 146,
so that d(F) does not change significantly within this
interval. For the chaotic cases, R = 0.2, 0.3, the depar-
tures from the universal GOE curve occur earlier than
predicted by Berry [21]. Also, in contrast with generic
chaotic systems, X~(l) oscillates around a saturation value
which is larger than the GOE value. These deviations are
more pronounced for R = 0.2 than for R = 0.3, which is
a clear indication of the effect of the nongeneric bounc-
ing ball manifolds that are larger both in number and in
measure in the R = 0.2 case. The bouncing ball mani-
folds attain their full strength in the R = 0 (integrable)
case, for which we observe an initial slope which is
much steeper than the value 1 predicted for Poisson
statistics. This is due to number-theoretic (NT) degen-
eracy of the energy levels, which depends on the dimen-
sionality. Taking this degeneracy into account, the initial
slope of X2(l) for R = 0 was calculated to be 0.0323kL,
which agrees well with the quantum data. [This estimate
is based upon a numerical evaluation of the degeneracy,
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FIG. 3. Nearest-neighbor distribution P(s) For each R, data.
are averaged over available spectra with different boundary
conditions. Inset: difference between P(s) and Pens(s)
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FIG. 4. X'(l) bilinear statistics for 133 ~ k ~ 146. For R =
0.2, and 0.3 we averaged over two spectra corresponding to
Neumann and Dirichlet boundary conditions on the sphere.

and was checked up to kL = O(103).] The expression
of the leading term in the k expansion of the satura-
tion value (R = 0) is semiclassically estimated by 1.36 X
10 (kL) [In(kL) —0.96], which is due to both the large
contributions of the bouncing balls in three dimensions
and a number-theoretical degeneracy of their lengths.
This saturation value was found to agree with the quantum
results for very large k. For the case shown in Fig. 4, k is
not large enough and the asymptotic value is not reached.

To summarize, the quantization of the 30 Sinai billiard
using the KKR method became feasible due to the high
symmetry of the billiard, and the resulting block-diagonal
structure of the Hamiltonian. This high symmetry results
in nongeneric bouncing ball periodic manifolds. The in-
finite number of the bouncing ball manifolds were shown
to dominate the length spectrum in a way that has im-
portant qualitative differences from the 20 case. Genuine
3D geometrical effects give rise to dramatic reduction of
the semiclassical contribution of the shortest unstable pe-
riodic orbit. The quantum short range level statistics were
shown to agree quite well with GOE results, in accordance
with the common experience with systems that have time-
reversal symmetry. However, important deviations have
been observed in the X statistics which were attributed to
the bouncing ball manifolds.
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