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Oscillating Singularities in Locally Self-Similar Functions
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Singularities induced by oscillating behavior are analyzed using the wavelet transform. We define
two local exponents which allow us to characterize both the singularity strength (Holder exponent)
and the instantaneous frequency of the oscillations. Such oscillating singularities are shown to appear
generically in local self-similar functions which are invariant under a nonhyperbolic mapping. We
illustrate our results on both isolated singularities and nonisolated singularities appearing in fractal
signals generated by nonhyperbolic iterative function systems.
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During the past few years, there has been increasing
interest in the study of irregular objects [1]. Fractal and
multifractal concepts have been developed to describe the
singular nature of such distributions through their scale
invariance (self-similarity) properties [1,2]. They have
been applied successfully in various physical situations
ranging from the characterization of ramified patterns
observed in growth experiments [3] to the study of the
statistics of the velocity and the dissipation fields in fully
developed turbulence [4,5]. In the latter context, some
authors [6] advocate the use of models of eddy structures
involving "spiral-type" behavior of the generic form

, . (
f(x) = (x —xp('sin (P oO, y & —1).

& lx —xplt')
(1)

Unfortunately, the multifractal formalism introduced in
Ref. [2(a)] does not take into consideration these oscillat-
ing singular behaviors. The aim of this Letter is to study
such locally accumulating oscillating behavior using a
tool that has proven particularly powerful for analyzing
singular functions, namely, the wavelet transform (WT)
[7). Within the general framework of WT analysis, we
introduce two local exponents n(xp) and p(xp). The ex-
ponent a(xp) can be seen as a generalization of the local
singularity exponent commonly used in the multifractal
description, whereas the exponent p(xp) accounts for the
behavior of the "instantaneous frequency. " For singular
behavior induced by "fast oscillations" [e.g. , Eq. (1)], we
show that p(xp) plays an important role in the characteri-
zation of the strength of the singularity. This Letter is
mainly devoted to the calculation of n and cp for locally
self-similar functions. We demonstrate that oscillating
(nonoscillating) singularities are generically associated to
invariance properties under nonhyperbolic (hyperbolic)
mapping s. We illustrate our purpose on particular
examples including the fractal coding function recently
introduced by Gutzwiller and Mandelbrot [8].

The WT of a signal permits an analysis both in physical
space and in scale space. It consists in decomposing a

signal in terms of ~avelets which are constructed from
one single function, the analyzing wavelet P, by means of
dilations and translations. The WT of a function f(x) is
defined as [7]

1
Tp(b, a) =-

a f (x)0( ) dx,

where b is a space parameter (b E R) and a a scale
parameter (a E R+*). The analyzing wavelet p(x) is
chosen well localized around x = 0 and with a vanishing
integral so that a large value of ~T~(b, a)~ corresponds
to a large variation of f(x) over a distance a from the
point x = b. Thus, as proved by Mallat and Hwang
[9], if f(x) is singular at x = xp, then, at any scale
a (arbitrarily small), the function ~T~(, a) ~

is locally
maximum at a point b(a) in the neighborhood of xp.
The points (b(a), a) in the space-scale half plane are
generally referred to as WT modulus maxima (WTMM);
they are lying on connected curves called maxima lines.
These lines generally converge to the points where f is
singular [9,10] [i.e., b(a) x when a ~ 0 ]. Moreover,
provided some first moments of P are zero, one can
recover [9—11] the HOlder exponent h(xp) of f at the point
xo by studying the power-law behavior of the WT along a
maxima line converging to xo.'

((b( ). ))— a 0+.

Let us recall that this exponent characterizes the singular-
ity strength of f(x) at the point x = xp.

f(xp + l) = f(xii) + if!'l(xp) + . . + (l"/ !)fnl'l( )xp

+ o (Ill"' l), (4)

where n ( h(xp) ( n + 1 and fl"l is the kth derivative
of f.

However, Eq. (3) is not relevant in the case of oscillat
ing singularities [9], i.e. , such that the Holder exponent
is increased by more than 1 when the function is inte-
grated (this is generally induced by the presence of an
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infinite number of accumulating oscillations in any neigh-
borhood of the singularity). Let us illustrate this irrele-
vance on the particular class of "infinitely oscillating"
functions defined in Eq. (1). These functions are singular
at xp and correspond, according to the definition [Eq. (4)],
to the Holder exponents h(xp) = y. The graph of such
a function is displayed in Fig. 1(a). As one can see in
Fig. 1(b), the WTMM of this function are lying on an
infinite (countable) number of maxima lines (I,)„&z ap-
pearing at smaller and smaller scales. Each maxima line
corresponds to an oscillation in the signal, and the scale
at which it appears is proportional to the distance between
two successive maxima lines. This distance can be seen
as an "instantaneous period. " It is clear that the WT along
any maxima line, for a small enough, will not account for
the singularity behavior of f at xp = 0 since none of these
lines converge towards the point xp = 0. Thus, instead of
following a maxima line, as in Eq. (3), one must "jump"
from one line to another in order to converge towards xp
when going from large to small scales. Let us consider the
maxima (b„,a„) which correspond to the greatest value of
lT~ l on each line l„(if it is not unique we consider the one

appearing at the largest scale). As shown in Fig. 1(b), b,
goes to xp when a„goes to 0. [It can be proven that the
points (b„,a„) belong to the "ridge" defined in Ref. [12]
as the instantaneous frequency curve in the (b, a) space-
scale half plane. ] Moreover, as illustrated in Fig. 1(c),
one can prove that, along this sequence, the WT modulus
follows a power-law scaling

le(b. , a„)l —a„'"',
where n(xp) = y/(P + 1). The so-obtained local expo-
nent n(xp) is smaller than the Holder exponent h(xp) = y.
It thus appears that, in order to extract h(xp), we must
characterize the oscillations of f(x), i.e., evaluate the ex-
ponent P. From n and P we will then naturally recover
y = h(xp).

Since each of the maxima line corresponds to an
oscillation in the signal, the abscissa b, behave like
lb„—xpl —n '/~ Moreo.ver, the scale a, is of the order
of the distance between this maxima line and the next
one, i.e., a„—b„—b, +] —n ~~+'~~~. Thus the distance
between the nth maxima line and the singularity xp scales
like

lb„—xol —a~l"), (6)

o.2 -( )
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(b) 1

'
~i((

'(i((( h(xo) = n(xo)/p(xp). (7)

where p(xp) = 1/(P + 1). As illustrated in Fig. 1(d), the
exponent p(xp) can thus be extracted from a simple log-
log plot of the distance lb„—xone vs the scale a„. The
Holder exponent h(xp) can thus be recovered through the
particularly simple relation
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FIG. 1. Detection of the local exponents a(xp) and p(xp)
associated to an oscillating singularity. (a) Graph of the
function f(x) = lxl~ sin(27r/lxlp) for y = —, and p = 1. The
point xp ——0 corresponds to an oscillating singularity of f
(b) WT skeleton showing the positions of the modulus maxima
for the signal in (a). The analyzing wavelet lb is the first
derivative of the Gaussian function. The maxima are lying
on maxima lines. Along each line l„, the symbol ( ~ ) marks the
point (a„,b„) where the WT is the greatest. (c) log, lTQ(b„, a„)l
vs log2a„. The slope provides an estimate of n(xp) = y/(P +
l). (d) log2 lb„l vs log, a„. The slope gives an estimate of
V(xp) = l/(P + l).

Let us note that Eqs. (5), (6), and (7) hold for a general
class of analyzing wavelets including the successive
derivatives of the Gaussian functions [2(c)].

For a general function f, we define the exponent
n(xp) as in Eq. (5) and p(xp) as the minimum of p(xp)
[Eq. (6)] and 1. The so-defined local exponents allow
us to characterize very precisely the strength and the
nature of a singular behavior at a given point xp. Indeed,
for a very large class of functions, one can prove
that the relation [Eq. (7)] still holds; i.e., the strength
of the singularity at xp is directly measured by the
ratio n(xp)/p(xp). Moreover, p(xp) = 1 indicates that xp
corresponds to a nonoscillating singularity. In that case,
we thus get n(xp) = h(xp); i.e., Eq. (3) holds and becomes
the same as Eq. (5). On the other hand, a value of p(xp)
smaller than 1 corresponds to an oscillating singularity
and, consequently, to an exponent n(xp) smaller than
h(xp). Equation (3) does not hold anymore. The smaller
p (xp) the more oscillating f in the neighborhood of
xo. Moreover, one can prove that the derivative f'(x) =
df/dx corresponds generically to the exponents a'(xp) =
n(xo) —1 and p'(xo) = p(xp). The Holder exponent of f'
at xp can thus be derived from the one of f using Eq. (7):

" (xo) = h(xo) —1/p(xo)
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Hence, the more oscillating the signal the more irregular
its derivative. Let us note that mathematicians have re-
cently refined the notion of Holder spaces by introducing
a 2-microlocal spaces [13,14] that allows a better char-
acterization of the action of integration or differentiation
operators in functional analysis. Our exponents a and p
can actually be linked to the 2-microlocalization local ex-
ponents s and s' through the relation n = s + s'(I —p).

Let us now consider the class of functions (or distribu-
tions) f(x) which are locally self-similar around a given
point xp = 0. We suppose that there exists an increasing
function F(x) with a fixed point xp which is stable un-
der the iteration of F and such that f(x) = f(F(x))/P(x),
where P(x) is some smooth weight function satisfying
0 & P(xp) ( 1. This invariance property of f can be eas-
ily transposed in terms of self-similarity of its WT [15]:

1
T~(b, a) = T(F(b), F'(b)a), (9)P b

where F'(x) is the first derivative of F(x). The same
kind of relation naturally holds for the modulus maxima
sequence (b„,a„) corresponding to the greatest values of
the WT along the maxima lines. By iterating this relation,
one gets b„= F[')(bp) and a„= (F["))'(bp)ap, where F[")
is the nth iterate of F. Moreover T„= ~T~(b„, a„)~—
P(bp)P(b~) . .P(b, ). One can distinguish two cases.

(i) F (xp) ( 1; i.e. , xp is an hyperbolic fixed point. One
can easily prove that ~b„—xp~ —a„—F'(xp)" when n

One thus gets cp(xp) = 1; i.e., the singularity located at
xp is a nonoscillating singularity and h(xp) = n(xp). The
value of the exponent n(xp) depends upon the expression
of P(x). In the case where P(xp) & 1, [T„—P(xp)" ], we
obtain h(xp) = a(xp) = —In(P)/ln[F'(xp)].

(ii) F'(xp) = 1; i.e., xp is a nonhyperbolic fixed point.
Generically, in the neighborhood of xo, one can write
F(x) = F(xp) + x xp C~x xp~" + o[(x xp)"] (C
0 and r ) 1). Using the former expressions of b„
and a„, one gets ~b„—xp~ —n' ' ") and a„—n'/'
We thus obtain, from Eq. (6), p(xp) = 1/r ( 1; i.e. , xp
corresponds to an oscillating singularity. Again, the value
of the exponent n(xp) depends on the expression of P(x)
The case where P(xp) ( 1 is degenerated in the sense
that n(xp) = +~; i.e., h(xp) = +~; f(x) is not singular
at x = xo, it is C even though it is infinitely oscillating
around xp. However, in the same spirit as for SRB (Sinai-
Ruelle-Bowen) measures [16], if we choose the weight
function P(x) = ~F'(x)~" for x in the neighborhood of
xp (g is an arbitrary positive real number), then we get
T„—[F["~(bp)]" Tp and thus a(xp) = rl. f is singular at
xp with an Holder exponent h(xp) = rg.

Oscillating singularities thus appear generically in lo-
cally self similar functions i-nvariant under nonhyperbolic
mappings The functions xr. sin(2'/x~) [Eq. (1)) are ac-
tually good examples of such functions. Indeed, they
are invariant under the mapping F(x) = x/(1 + xp)'~P
[F'(0) = 1 and r = P + 1] with P(x) —F'(x)" [where
g = y/(P + 1)]. According to the considerations just

above, one easily recovers p(0) = 1/r = 1/(P + 1) and
a(0) = rl = y/(p + 1). In Fig. 2(c), we have displayed
a fractal measure which has been constructed on the
interval [0,1] by iterating the iterative function system
(IFS) [17] shown in Fig. 2(a). Each branch of the
IFS, Fl(x) = x/(1 + 3x) [F2(x) = (x + 1)/2], is associ-
ated with the weight function Pl(x) = ~F|(x)~'/3 [P2(x) =
(I/2)'/3]. Each point of the support of the measure can

0
0

(c)

0.003

0

FIG. 2. Fractal distributions with oscillating behavior. (a)
Two branch IFS, Fi(x) = x/(I + 3x) and F2(x) = (x + 1)/2,
used to build the measure in (c). Only the second branch
is hyperbolic [Fl(0) = 1, F2(1) = 2]. (b) Two branch IFS,
F&(x) = x/(1 + x) and F2(x) = 1/(2 —x), used to build the
function in (d). Both branches are nonhyperbolic [F|(0) =
F2(1) = 1]. (c) Fractal measure generated by the two branch
IFS shown in (a) when using the respective weight functions
P&(x) = ~FI(x)~'t and P2(x) = (I/2)' ~. Any point of the
support of the measure can be addressed through a symbolic
sequence of 1's and 2's. As F [ is nonhyperbolic, any
symbolic sequence which ends with an infinite number of 1

1corresponds to an oscillating singularity (p = 2). (d) Graph
of the Gutzwiller-Mandelbrot function generated by the two
branch nonhyperbolic IFS displayed in (b). Constant ((I)
weight functions are used; the oscillating behaviors are thus
degenerated in the sense that n = h = +~; i.e., the signal is
not singular although infinitely oscillating. These behaviors are
dense in [0,1). All the other points correspond to nonoscillating
singularities.
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be addressed by a symbolic sequence of 1's and 2's,
e.g. , x = 0 corresponds to the symbolic sequence 1111.. .
whereas x = 1 corresponds to 2222. . .. As the first branch
is nonhyperbolic, one can show that all the symbolic se-
quences which end with an infinite number of 1's corre-
spond to oscillating singularities. In the same way, the
sequences ending with an infinite number of 2's corre-
spond to nonoscillating singularities. Actually one can
show that this is also the case for any periodic symbolic
sequence which does not end by an infinite number of
1's. Thus, in the neighborhood of any oscillating singu-
larity, there exists an infinite number of both oscillating
and nonoscillating singularities.

As the last example, let us consider the coding function
introduced by Gutzwiller and Mandelbrot [8] in the
context of chaotic Hamiltonian systems. It has been
proven by Bessis and Mantica [18] that this function
can be obtained using a 2-branch IFS [Fig. 2(b)] whose
two branches are nonhyperbolic. The graph of this
coding function is shown in Fig. 2(d). Nonoscillating

(p = I, e.g. , periodic symbolic sequences) and oscillating
behavior (q ( 1) are locally accumulating. However, the
weight functions associated to the nonhyperbolic branches
are strictly smaller than 1. Thus, the oscillating behaviors
are "degenerated" in the sense that they do not induce any
singularity (n = h = +~). These "smooth" behaviors
are responsible for the slow decay of the f(n) singularity
spectrum estimated by Gutzwiller and Mandelbrot [8]
using the classical multifractal formalism.

To summarize, we have thus defined two new local
exponents which allow us to characterize very precisely
both the nature and the strength of a singular behavior.
These wavelet-based exponents [Eqs. (5) and (6)] can be
seen as a generalization of the classical singularity expo-
nent. They appear to be crucial for the understanding of
the change of local regularity properties of a distribution
when operating differentiation or integration. Let us note
that the classical multifractal formalism [or its wavelet-
based generalization [2(c),5, 10]] accounts only for the
fluctuations of the scaling exponent defined in Eq. (3),
which has no meaning when oscillating singularities are
present. We have shown that such oscillating behaviors
generically appear in fractal objects that are self-similar
under nonhyperbolic mappings. These situations are com-
monly encountered in mathematics or physics; let us
mention, for example, the famous Riemann-Weierstrass
function [11(b)]or the Farey-tree partitioning of rationals
used to study the distribution of mode-locking intervals
for critical circle maps [19]. A "grand-canonical" multi-
fractal formalism that would account for the fluctuations
of both exponents n and cp would be of fundamental in-
terest in this context.

Note added. —After completion of this work, we have
been aware of a work by S. Jaffard and Y. Meyer [14]
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