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Can the Nambu-Goldstone Boson Live on the Light Front?
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We show that the Nambu-Goldstone (NG) boson restricted on the light front (LF) can only exist
if we regularize the theory by introducing the explicit symmetry breaking NG-boson mass m . The
NG-boson zero mode, when integrated over the LF, must have a singular behavior —1/m in the
symmetric limit of m~ 0. In the discretized LF quantization this peculiarity is clarified in terms of
the zero-mode constraints in the linear cr model. The LF charge annihilates the vacuum, while it is not
conserved in the symmetric limit in the NG phase.
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Recently there has been renewed interest in light-front
(LF) quantization [1] as a promising approach to solve
nonperturbative dynamics [2,3]. Based on the trivial vac-
uum structure, the LF quantization with a Tamm-Dancoff
truncation has successfully described bound state spectra
and their wave functions in several field theoretical mod-
els in (1+1) dimensions, particularly within the frame-
work of the discretized LF quantization (DLFQ) [4,5].
However, realistic theories such as QCD in (3+1) dimen-
sions include rich structures such as confinement, sponta-
neous symmetry breaking (SSB), etc. , which are basically
on account of the nontrivial vacuum in the conventional
equal-time quantization. How can one reconcile such a
nontrivial structure of the theory with the trivial vacuum
of the LF quantization? It seems to be now a general
consensus that the zero mode [4] plays an essential role
to realize the spontaneous symmetry breaking on the LF
[3,6,7]. The problem of the zero mode in the LF vac-
uum was first addressed back in 1976 by Maskawa and
Yamawaki [4], who discovered, within the canonical the-
ory of DLFQ, the second class constraint, the so-called
zero mode constraint, through which the zero mode is
not an independent degree of freedom but a complicated
operator-valued function of all other modes. One may
thus expect that solving the vacuum state in the ordinary
equal-time quantization is traded for solving the operator
zero mode in the LF quantization. Actually, several au-
thors have recently argued in (1+1)-dimensional models
that the zero-mode solution might induce the spontaneous
breaking of discrete symmetries [7]. However, the most
outstanding feature of spontaneous symmetry breaking is
the existence of the Nambu-Goldstone (NG) boson for
continuous symmetry breaking. Thus the real question
to be addressed is whether or not the zero-mode solu-
tion automatically produces the NG phase, particularly
in (3+1) dimensions.

In this paper we shall show, in the context of DLFQ,
how the NG phenomenon is realized due to the zero
modes in (3+1) dimensions, while the vacuum remains
in the trivial LF vacuum. We encounter a striking feature
of the zero mode of the NG boson: Naive use of zero-

mode constraints does not lead to the NG phase at all
("no-go theorem"), in contrast to the current expectation
mentioned above. Within the DLFQ, it is inevitable
to introduce an infrared regularization by the explicit
symmetry breaking mass of the NG boson m . The
NG phase can only be realized via peculiar behavior of
the zero mode of the NG-boson fields: The NG-boson
zero mode, when integrated over the LF, must have a
singular behavior —1/m2 in the symmetric limit m2 ~ 0.
This we demonstrate both in a general framework of the
LSZ reduction formula and in a concrete field theoretical
model, the linear o. model, within a framework of DLFQ.
The NG phase is, in fact, realized in such a way that the
vacuum is trivial while the LF charge is not conserved in
the symmetric limit m2 0.

Let us first prove a no-go theorem that the naive LF
restriction of the NG-boson field leads to vanishing of
both the NG-boson emission vertex and the corresponding
current vertex; namely, the NG phase is not realized in the
LF quantization.

Based on the LSZ reduction formula, the NG-boson
emission vertex A B + ~ may be written as

(&~(q)lA) = i d x e'~'(Bl vr(x)lA)

= i (2~) 8(p„—ptt
—

q )8 (p„—pe —
q )

&«alJ. (0)IA),

where 7r(x) and j (x) = vr(x) = (2p+p —pz )~(x)
are the interpolating field and the source function of
the NG boson, respectively, and q& = p~ —

p& are the
NG-boson four momenta and q =—(q, q ) [8]. It is
customary [9] to take the collinear momentum, q = 0 and

q 4 0 (not a soft momentum), for the emission vertex
of the exactly massless NG boson with q = 0. Here we
adopt the DLFQ, x H [ L, L], with a perio—dic boundary
condition [10] in the x direction and take the continuum
limit L ~ ~ in the end of the whole calculation [4].
Without specifying the boundary condition, we would
not be able to formulate consistently the LF quantization
anyway, even in the continuum theory [11]. Then the
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NG-boson emission vertex should vanish on the LF due
to the periodic boundary condition:

d x a~J"(x)IA) = f m'(Bl d'x 7r(x)IA)

(2~)'&"'(p& —p&) (Blj (0)IA)
L

d x lim(BI
L—+co —L

dx 2B 6+~ A = 0. 2

0 = (Bl d'x &„J'(x)IA)..=p

= —i(2') 6~ ~(q) (BIJ (0)IA),
2pA

where f d3x —= limt f ~ dx d2x~ and the integral of
the NG-boson sector m has no contribution on the
LF because of the periodic boundary condition as we
mentioned before. Thus the current vertex (BIJ (0)IA)
should vanish at q = 0 as far as mA 4 m&.

This is actually a manifestation of the conservation
of a charge Q —= f d3x J+, which is constructed only
from the nonpole term. Note that Q is equivalent to
the full LF charge Q =—f d~x J+, since the pole part
always drops out of Q due to the integration on the LF,
i.e., Q = Q. Therefore the conservation of Q inevitably
follows from the conservation of Q: [Q, P ] = [Q, P ] =
0, which, in fact, implies the vanishing current vertex
mentioned above. This is in sharp contrast to the charge
integrated over usual space x = (x', x2, x~) in the equal-
time quantization: Q" = f d x JP is conserved while
Q" = f d x Jp is not.

Thus the NG bosons are totally decoupled, i.e., the
NG phase is not realized on the LF. Note that this is
a direct consequence of the periodic boundary condition
and the first-order form of = 26+8 —B~~ in 8 in
contrast to the second-order form in B0 in the equal-time
quantization.

Now, we propose to regularize the theory by introduc-
ing explicit symmetry breaking mass of the NG boson
m . The essence of the NG phase with a small explicit
symmetry breaking can well be described by the old no-
tion of the PCAC (partial conservation of axial vector
current) hypothesis: B~J~(x) = f m2 ~(x), with ~(x) be-
ing the interpolating field of the (pseudo) NG boson ~.
From the PCAC relation the current divergence of the
nonpole term J~(x) reads B~J~(x) = f ( + m2)~(x) =
f j (x). Then we obtain

Another symptom of this disease is the vanishing
of the current vertex (analog of gz in the nucleon
matrix element). When the continuous symmetry is
spontaneously broken, the NG theorem requires that the
corresponding current J~ contains an interpolating field of
the NG boson 7r(x), that is, J~ = f R„~—+ J„, where

f is the "decay constant" of the NG boson and J„
denotes the nonpole term. Then the current conservation
B„J& = 0 leads to

(Bl d x f j (x)IA), (4)

where the integration of the pole term ~(x) is dropped
out as before. The second expression of (4) is nothing
but the matrix element of the LF integration of the
7r zero mode (with P+ = 0) co = (1/2L) J „dx 7r(x).
Suppose that f d3x cu (x) = Jd3x vr(x) is regular when
m2 ~ 0. Then this leads to the no-go theorem again.
Thus in order to have the nonzero NG-boson emission
vertex [right hand side (rhs) of (4)] as well as the nonzero
current vertex [left hand side (lhs)] at q = 0, the ~ zero
mode co„(x) must behave as

d x co — (m 0).3 1 2

This situation may be clarified when the PCAC relation
is written in the momentum space:

~f-Jvr(q') p ( )
q'fvrJ~(q') y"

m2 —q2 m2 —q2
J~ q +8 J~q.

(6)
What we did when we reached the no-go theorem can
be summarized as follows. We first set the lhs of (6)
to zero [or equivalently, assumed implicitly the regular
behavior of f d x cu (x)] in the symmetric limit in accord
with the current conservation B&J„=0. Then in the LF
formalism with q = 0 (q2 = 0), the first term (NG-boson
pole term) of the rhs was also zero due to the periodic
boundary condition or the zero-mode constraint. Thus
we arrived at 8" J(q) = 0. However, this procedure is
equivalent to playing a nonsense game:

m —q21lim, , I=0
~.', q2-0 m' —q')

as far as f j„40 (NG phase). Therefore the "m = 0"
theory with a vanishing lhs is ill defined on the LF,
namely, the no-go theorem is false. The correct procedure
should be to take the symmetric limit m2 ~ 0 after the LF
restriction q = 0 (q = 0) [12], although (6) itself yields
the same result f j = B~J„, irrespective of the order of
the two limits q 0 and m ~ 0. Then (5) does follow.
This implies that at quantum level the LF charge Q = Q
is not conserved, or the current conservation does not hold
for a particular Fourier component with q = 0 even in the
symmetric limit:

1
[Q P ] = B~J„Iq=p = f~ lim m d x su~ 4 0.

l m ~0
(7)

Let us now demonstrate that (5) and (7) indeed take
place as the solution of the constrained zero modes in the
NG phase of the O(2) linear o. model:

1 2 1 2 1= —(B~o.) + (a„~) — p, (o' + 7r )

A

4
(o- +m) +co. ,
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where the last term is the explicit symmetry breaking,
which regularizes the NG-boson zero mode.

In the DLFQ we can clearly separate the zero modes
(with P = 0), 7ro = (1/2L) f ~ dx 7r(x) (similarly for
o.o), from other oscillating modes (with P+ 4 0), p
7r —vro (similarly for p ). Through the Dirac quantiza-
tion of the constrained system the canonical commutation
relation for the oscillating modes reads [4]

x y

(9)

where each index stands for 7r or o., and the e(x)
is the sign function. By use of (9) we can introduce
creation and annihilation operators simply defined by the
Fourier expansion of p; with respect to x even when the
interaction is included. Thus the physical Fock space is
constructed upon the LF vacuum ("trivial vacuum") which
is defined to be annihilated by the annihilation operators
without recourse to the dynamics.

On the other hand, the zero modes are not independent
degrees of freedom but are implicitly determined by p
and p through the second class constraints (so-called
zero-mode constraints) [4]:

1

2L
dx [(p,' —a~)7r + A~(~' + o-')] = 0,

and similarly, y —= (1/2L) f ~ dx ([7r o.] —c) = 0.
Note that through the equation of motion these
constraints are equivalent to the characteristic
of the DLFQ with periodic boundary condition,

= —(1/2L) f ~ dx 26+8 7r = 0 (similarly for
cr), which we have used to prove the no-go theorem for
the case of m2 —= 0.

Actually, in the NG phase (p, ~ ( 0) the equa-
tion of motion of 7r reads ( + m2)vr(x) =

A(vr + era'' —+ 2v7ro') = j (x), with o' = o —v
and m2 = p2 + Av2 = c/v, where v —= (o.) is the clas-

sical vacuum solution determined by p, v + Av3 = c.
Integrating the above equation of motion over x, we have

d'x j (x) —m d'x cv (x) = d'x ~(x)

dxy =0,
where f d x cv (x) = f d x 7r(x). Were it not for
the singular behavior (5) for the vr zero mode cv

we would have concluded (27r) 6 (q)(~lj (0)lo) =
—(7rl f d3xy lo.) = 0 in the symmetric limit m 0.
Namely, the NG-boson vertex at q = 0 would have
vanished, which is exactly what we called the no-
go theorem now related to the zero-mode constraint

On the contrary, direct evaluation of the ma-
trix element of j = —A(vr3 + 7ro' + 2v err') in
the lowest order perturbation yields a nonzero result
even in the symmetric limit m ~ 0: (~!j (0)lo) =

2Av(vr—lq& p !or) = —2Av 4 0 (q = 0), which is
in agreement with the usual equal-time formulation.
Thus we have seen that naive use of the zero-mode
constraints by setting rn2 —= 0 leads to the internal
inconsistency in the NG phase. The no-go theorem is
again false.

We now study the solution of the zero-mode constraints
in the perturbation around the classical (tree level) SSB
vacuum, since we need to formulate the NG phase on
the LF at least for the theory whose SSB is already
described at the tree level in the equal-time quantization.
It is convenient to divide the zero modes 7ro (or pro) into
a classical constant piece v (or v ) and an operator
part co (or cv ), as do the zero-mode constraints. The
classical part of the zero-mode constraints is nothing but
the condition that determines the minimum of the classical
potential, and we have chosen a solution that v = 0
and v =—v', i.e., ~0 = ~, a-0 = co + v. The operator
zero modes are solved perturbatively by substituting the

expansion ~; = g& &
A ~, under the Weyl ordering.(k)

The lowest-order solution of the zero-mode constraints
and g for co takes the form

(—m + Bi) tv~ dx (cp + p p +2vp p ). (12)

Then (5) immediately follows [13]:
lim I

2m~~0
dxcu = —A dx(p + p q +2vq& p ) 40. (13)

This is our main result. This actually ensures a nonzero
o. ~ 7r7r vertex through (11): (vrlj (0)lo.) = —2Av,
which agrees with the previous direct evaluation as it
should.

Let us next discuss the LF charge operator. The O(2)
current in this model is given by 1„=B~o ~ —d„~o..
As was noted in Ref. [4], the corresponding LF charge
Q=Q= fdx(B p p —8 p p ) containsnozero

modes including the ~ pole term which was dropped by
the integration due to the periodic boundary condition
and the 6, so that Q is well defined even in the NG
phase and hence annihilates the vacuum simply by the P+
conservation:

Qlo) = o (14)
This is also consistent with explicit computation of the
commutators: ([Q, p ]) = —i(p ) = 0 and ([Q, p ]) =
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i(p ) = 0 [14], which are contrasted to those in the usual
equal-time case, where the spontaneously broken charge
does not annihilate the vacuum: ([Q", rr]) = i(—7r) =
o, ([Q",~]) = i(~) ~ o.

Since the PCAC relation is now an operator relation
for the canonical field 7r(x) with f = v in this model,

(13) ensures [Q, P j 4 0 or a nonzero current vertex
(~IJ+~o) 0 0 (q2 = 0) in the symmetric limit. Noting
that Q = Q, we conclude that the regularized zero-mode
constraints indeed lead to nonconservation of the LF
charge in the symmetric limit m ~ 0:

d XM77 4 0.[Q, P j = iv lim m (15)
m~~0

This can also be confirmed by direct computation of
[Q, P ] through the canonical commutator and explicit
use of the regularized zero-mode constraints. At first sight
there seems to be no distinction between the spontaneous
and the explicit symmetry breakings on the LF. However,
the singular behavior of the NG-boson zero mode (5)
or (13) may be understood as a characterization of the
spontaneous symmetry breaking.

Our result implies that solving the zero-mode con-
straints without regularization would not lead to the NG
phase at all in contradiction to the naive expectation [7].
Our treatment of the zero modes in the canonical DLFQ
is quite different from that proposed recently by Wilson
et al. [3], who eliminate the zero modes by hand in the
continuum theory instead of solving the zero-mode con-
straints. They also arrived at the nonconservation of the
LF charge without zero mode. The relationship between
these two approaches is not clear at the moment. Fi-
nally, it should be noted that there exists another no-go
theorem that forbids any LF field theory (even the free
theory) satisfying the Wightman axioms [15]. This no-

go theorem is also related to the zero modes but has not
yet been overcome by the DLFQ or any other existirig
approach and is beyond the scope of this paper.
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