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String Theory, Misaligned Supersymmetry, and the Supertrace Constraints
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We demonstrate that string consistency in four spacetime dimensions leads to a spectrum of string
states which satisfies the supertrace constraints Str 1 = 0 and Str M ~ A at tree level, where A is the
one-loop string cosmological constant. This result holds for a large class of string theories, including
critical heterotic strings. For strings lacking spacetime supersymmetry, these supertrace constraints
will be satisfied as a consequence of a hidden "misaligned supersymmetry" in the string spectrum.
These results suggest a new intrinsically stringy mechanism whereby such supertrace constraints may
be satisfied without phenomenologically unacceptable consequences.
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In quantum field theories with broken supersymmetry,
the divergence properties of amplitudes are governed by
the values of various supertraces calculated over the par-
ticles in the resulting spectrum. For example, in four-
dimensional spacetime, StrM4 controls the logarithmic
divergences in the vacuum energy density, while StrM2
and StrM —= Str1 control the quadratic and quartic di-
vergences, respectively. If the supersymmetry (SUSY) is
unbroken, each of these supertraces vanishes as a con-
sequence of strict level-by-level degeneracies between
bosonic and fermionic degrees of freedom. It is phe-
nomenologically important, however, to construct non-
SUSY field theories which retain the soft divergence
behavior of their SUSY counterparts, hopefully canceling
the quartic and quadratic divergences which might appear.
As is well known, this can be achieved at tree level by
breaking the SUSY either spontaneously or through the
addition of certain "soft" breaking terms; indeed, in many
cases the vanishing of Str1 and StrM2 is preserved. The
problem with these scenarios, however, is that they sat-
isfy these two constraints in a multiplet-by-multiplet fash-
ion, so that the mass of each state in the broken theory is
constrained to be relatively close to that of its former super-
partner. Since this is unacceptable from a phenomenologi-
cal standpoint, one must therefore rely on further quantum
effects in order to lift these constraints. One then finds that
although Str 1 continues to vanish, Str M2 takes a nonzero,
model-dependent value.

In this Letter we consider the corresponding situation
in string theory, and find that at tree level, the general re-
quirements of string consistency lead to similar supertrace
constraints. Specifically, defining our string-theoretic
supertraces as

StrM t —= lim. g (—1) (M;) Pe
states

we find that for a large class of tachyon-free string
theories in four dimensions,

2 3
Sti I = 0 and StrM = —

2 +,t„„g,4~2 (2)

where A„„,„g is the corresponding (finite) one-loop string-
theoretic cosmological constant. Thus, the spac ctime
bosons and fermions at all string mass levels must
always arrange themselves at tree level so that these two
supertrace constraints are satisfied. Unlike the case in
field theory, however, we will find that these results rely
on only the general properties of string consistency (in
particular, the presence of modular invariance and the
absence of physical tachyons). These results are therefore
independent of the particular string model in question,
and consequently have broader applicability than in field
theory.

A second and perhaps more important difference con-
cerns the manner in which these constraints are satisfied.
In string theories with spacetime SUSY, A„„„g= 0 and
these constraints are trivially satisfied through an exact
boson-fermion degeneracy. This is just as in the field the-

ory case. However, for string theories without spacetime
SUSY, these constraints need not be satisfied multiplet-
by-multiplet. Rather, as we will discuss, these constraints
are generally satisfied in a different manner, through a so-
called "misaligned SUSY." Misaligned SUSY therefore
represents an entirely new stringy scenario whereby con-
straints such as those in Eq. (2) may be satisfied without
phenomenologically unacceptable consequences. As we
shall see, this alternative scenario is possible in string the-
ory because of the existence of an infinite tower of string
states, thereby permitting the freedom to satisfy the super-
trace constraints across the entire string spectrum, rather
than multiplet-by-multiplet. Indeed, in non-SUSY string
models it is not necessary (or often even possible) to make
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reference to a (broken) multiplet structure in the spectrum.
The bosonic and fermionic states which appear will nev-
ertheless conspire to exhibit a "misaligned SUSY" and
satisfy Eq. (2) in a highly nontrivial manner.

Let us begin by first reviewing the appearance of
the supertrace constraints in field theory. Perhaps the
simplest manner in which they arise is through the
calculation of the field-theoretic vacuum energy density
(cosmological constant), given to lowest order as

1
A;, = —g(—1)

t

1 F
2

1 1

2 (4')Dt2 ~

d
In(p + M, )2rt ~

P
(27tp p

dt
( p2+M2)t

t

—M t

t

—M, t

Here the summations are over all states in the theory
(with corresponding masses M;), and we have kept the
spacetime dimension D arbitrary. In the second line we
have passed to a Schwinger proper-time representation
wherein any ultraviolet divergences from p& .-~ appear
as a divergence as t = 0, while infrared divergences
appear as t

We are concerned with the divergence properties of
A f' ]d and from Eq. (3) these can now easily be deter-
mined. The absence of any infrared divergence from the
t = ~ region is guaranteed if there are no tachyonic
states with M; ( 0. Ultraviolet divergences, on the other
hand, would appear as t = 0. These will therefore be
absent if

g(—1) e ' —t with et ~ D/2 (4)
t

as t = 0. Since we are in the t .- 0 limit, we can
—Mexpand the exponential, e M ' = 1 —M; t + M; t /2 +

and thereby obtain the separate supertrace con-
ditions Str M t' —= g, (—1) (M;) P = 0, valid for P =
0, 1, . . . , [D/2] where [x] denotes the greatest integer less
than or equal to x. In particular, for D = 4, this yields
the three separate supertrace constraints Str1 = StrM2 =
Str M4 = 0, with logarithmic, quadratic, and quartic diver-

gences, respectively, if the Str M4, Str M2, and Str 1 condi-
tions are not satisfied. While all three of these supertrace
conditions are satisfied in SUSY theories, spontaneous or
soft SUSY breaking preserves only the Strl (and occa-
sionally the Str M2) condition at tree level [1].

Let us now consider the corresponding situation in

string theory. A priori, there are three fundamental
differences. The first is that in string theory, there are an

infinite number of states; these generally appear in towers
whose levels are integer-spaced (in Planck-scale units),
and whose state degeneracies grow exponentially with
mass. This is why a regulator such as that in Eq. (1) must
be chosen. The second difference is that whereas field-
theoretic states are characterized by a single mass M;, in

string theory the energy of each state is described through
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two such quantities, the separate left- and right-moving
(L) (z)

mass contributions M; and M; whose squares always

differ by integers. A state is deemed "physical" if M;

M;, and "unphysical" otherwise; note that only the
physical string states correspond to actual particles in

spacetime. Nevertheless, both types of states contribute
to the string-theoretic one-loop cosmological constant
A„„;ng. Indeed, in string theory, A„„ng is given by

Astring
d2~

, Z(r),

where the integration variable 7. is the torus complex
modular parameter, and where the string partition function
Z(r) is a trace over the Fock space of physical and
unphysical string states,

Astring
7T

llm
3 72~0

&/'2

&/2
dr] Z(r),

where ~~ —= Re r. This class includes all unitary non-
critical strings, critical type-II strings, as well as the
phenomenologically interesting case of D ) 2 critical

Z( ) (I )]—D/2 y ( 1)F [M, ]2—[M, 'P

states

with q —= e2 " and with all masses in units of the
Planck mass. In the usual string formulation, the modu-
lar invariance of Z(r) allows one to truncate the region
of r integration, as in Eq. (5), to the fundamental do-
main of the modular group, + —= (r: ~r~2 ~ 1, Imr ~ 0,
(Re r ) 1/2).

Since ~2 =—Im 7. in string theory plays the role of the
Schwinger proper time t in field theory, we see that the re-
gion ~2 = ~ corresponds to the infrared, and 7-2 = 0 to
the ultraviolet. Infrared divergences will thus be absent,
as in field theory, if there are no physical tachyonic states

with [M; ]2 = [M; ]2 ( 0. Indeed, this is part of what(L) 2 (~) 2

defines a physically consistent string theory. Turning to
the ultraviolet, however, we see that the truncation of the
region of r integration to the fundamental domain + has

already excluded the region near ~2 .- 0. This is the root
of the well-known remarkable ultraviolet finiteness prop-
erties of string theory, and the symmetry by which this
occurs (namely, modular invariance) is also part of what
defines a consistent string theory.

However, it is this feature which represents the third
fundamental difference between string theory and field
theory, for we see that the ultraviolet finiteness of
A„„„g has automatically arisen through a truncation in

the range of integration. What we require, however,
is an alternative expression for A„„„g whose finiteness
explicitly rests on the behavior of the string spectrum.
Indeed, it is only in this way that we can exploit
the finiteness of A„„ng to derive a series of supertrace
mass formulas for string theory just as exist in field
theory. Fortunately, for a large class of tachyon-free
string theories, such an alternative expression exists [2]:
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heterotic strings [3]. Substituting the form of the string
partition function Z(r) in Eq. (6) and explicitly perform-
ing the ~i integral, we then obtain

Astring »m (.,)'-Dt2
3 72~0

Astring lim (r )
1 D/2 P ( 1)Fe 4nT2M(

3 72~0

so that A„„„g is indeed free of ultraviolet divergences if
and only if, as 7-2 .- 0,

g(—1) e " ' —(r2) with n ~ D/2 —1. (10)
phys.

At this point we have shown that the masses of physical
states throughout the spectra of such consistent tachyon-
free string theories must always arrange themselves so as
to satisfy Eq. (10). This result, however, is completely
analogous to the corresponding field-theoretic result in
Eq. (4), and the different powers of t or r2 which ap-
pear on the right sides of these equations reflect the extra
finiteness properties of string theory relative to field the-
ory (with the quartic and quadratic divergences in field
theory corresponding, respectively, to logarithmic diver-
gences and constant terms in string theory). It is there-
fore tempting to proceed as for the field-theoretic case,
and expand the exponential to obtain the corresponding
supertraces. However, in the string case it is not techni-
cally proper to expand the exponential before taking the
limit, since our Fock space of string states is infinite di-
mensional. Rather, rigorously defining our string super-
traces as in Eq. (1) and identifying y = 4rrr2, we should
properly evaluate these supertaces without expanding the
exponentials, but rather by taking derivatives with respect
to r2 only after the summation is performed:

StrM ~ = lim g( 1)Fe 4~~2M(

4~ d~2

—1 d i 3
lim

~

—A„„;„gr2 . (11)
~2—O 4~ d7-2 j

This yields, however, the same results as we would have
obtained by expanding the exponentials. In particular, we
find from Eq. (11) that for general D,

StrM p = 0 for p ( D/2 —1,
while for even D we also have the result

D 23 (D/2 —I)—!
~ —4~ ~t2-)

Thus, for D = 4, we find that the spectra of all consistent
unitary noncritical strings and critical type-IT and heterotic
strings must satisfy the supertrace constraints in Eq. (2).

P EZ, (12)

(L) 2
X g (—1) e " ' 6 (L) (R).M;,Mi

states

We thus see that in this formulation, only the masses
of the physical string states are relevant. Defining M; —=

M; = M;, we therefore have(L) (R)

We emphasize that our derivation has exploited only
the fundamental characteristics of string consistency—
namely, the absence of physical tachyons and the existence
of modular invariance. We have not imposed the finiteness
of A„„„g as is done in field theory for A f' fd rather,
the finiteness of A„„ng is a consequence of these more
fundamental properties. Hence the string case differs quite
markedly from the field-theoretic case. For example, while
the vast majority of non-SUSY field theories do not obey
any sort of supertrace conditions, we see that it is generally
impossible to avoid these constraints in string theory. They
are indeed generic properties of the moduli space of such
tree-level non-SUSY string vacua.

Given these results, let us now discuss how string theory
manages to evade the phenomenologically undesirable
consequences which would arise in field theory. It is here
that the existence of an infinite number of string states
proves crucial. Indeed, it has recently been shown [4]
that the spectrum of any consistent string theory which
is modular invariant and free of physical tachyons will
necessarily exhibit a so-called misaligned SUSY. In the
case of non-SUSY strings, this hidden symmetry takes
the form of a subtle boson-fermion oscillation in which,
for example, any surplus of bosons at any given string
level necessarily implies a larger surplus of fermions at
a higher level, which in turn implies an even larger boson
surplus at an even higher level, and so forth throughout
the infinite tower of states. Such behavior is sketched in
Fig. 1 for a simple string theory containing two sectors, a
bosonic sector with states at integer levels M2 (in units of
the Planck mass Mo), and a fermionic sector with states
at levels M E Z + 1/2. The numbers gM of bosonic
minus fermionic states at each level M are indicated by the
solid dots. Although these two sectors are "misaligned"
by a half-unit of energy, the number of such states at each
level always grows exponentially according to complicated
functions (I)(M) which are exactly equal and opposite for
the two sectors. Even for string theories containing many
sectors, the sum of the corresponding functional forms

P; (I), (M) over all string sectors must always cancel, and
similar oscillations will appear. Further details behind this
misaligned SUSY can be found in Ref. [4].

It is easy to check that degeneracies gM which be-
have in this oscillatory fashion will yield vanishing Str1
when regulated as in Eq. (1). This type of stringy boson-
fermion oscillation is therefore precisely what enables a
string spectrum with exponentially growing numbers of
string states to satisfy our supertrace constraints. More-
over, since such oscillations achieve cancellations be-
tween states at different energy levels across the infinite
string spectrum, no strict multiplet-by-multiplet cancella-
tions are necessary or even occur. Indeed, it is possible
to construct consistent non-SUSY string models whose
massless (observable) states are those of the standard
model, but whose (broken) superpartners are either absent
or at the Planck scale. The spectra of such theories will
nevertheless satisfy our supertrace constraints.
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FIG. 1. Misaligned SUSY and boson-fermion oscillations.

We conclude with some final comments. First, we
observe that this misaligned SUSY mechanism can even
be applied directly in field theory, since this string-
inspired oscillation scenario does not depend on the
particular scale M0 of the level spacing. Indeed, all that
is required for the absence of such divergences is the
cancellation of the degeneracy functions iIi(M). Thus, for
example, it may be possible to exploit this mechanism
to build an alternate nonsupersymmetric solution to the
gauge hierarchy problem.

Second, motivated by these supertrace results, we may
ask whether there exist non-SUSY string theories which
nevertheless have vanishing A„„„g. Indeed, such points
in string moduli space would lead to string spectra satis-

fying both Str 1 = Str M = 0, thereby ensuring at most
logarithmic divergences in any field theory containing the
same numbers and energy distribution of bosonic and
fermionic states. Furthermore, such points would have
vanishing dilaton one-point functions, as required for vac-
uum stability at one loop and finite string amplitudes at
higher loops. Unfortunately, despite various efforts [5],
no non-SUS Y models with vanishing A„„„ghave yet been
constructed. There do exist, however, stringlike partition
functions Z(r) which are nonvanishing (i.e., non-SUSY)
but whose one-loop integrals A vanish exactly [6]. Thus,
there exist known non-SUSY distributions of states (gM)
which lead to vanishing A„„„g,and for which both Str1
and StrM cancel nontrivially. Moreover, we see from
Eq. (12) that one can also obtain such (gM) with van-

ishing supertraces by considering non-SUSY strings in
D ) 4. For example, the degeneracies (gM) from the
D = 10 non-SUSY tachyon-free SO(16) X SO(16) string
have Str 1 through Str M all vanishing.

Third, we emphasize that our definition of the string-
theoretic supertraces in Eq. (I) is rooted in the actual string
spectrum, and realizes the supertrace as an explicit sum
over string states. As such it is completely general, and
applies to large classes of tachyon-free four-dimensional
string theories. By contrast, alternate supertrace calcula-
tions [7] consider only a particular family of non-SUSY
string vacua which are continuously connected to a su-
persymmetric point, and define the supertraces through an
expansion of A„„;„g with respect to the relevant SUSY-
breaking parameter. Understanding the relation between
these two approaches is an important issue.

Finally, we point out that an outstanding problem in

string theory has been to understand the origins of mis-
aligned SUSY as a symmetry, and to determine the kinds
of dynamical SUSY-breaking scenarios which lead to
such boson-fermion oscillations. Our results concern-
ing the supertrace implications of misaligned SUSY will
therefore be a useful tool in this quest.
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