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Many-Body Effects on Polarization and Dynamical Charges in a Partly Covalent
Polar Insulator

R. Resta' and S. Sorella
Dipartimento di Fisica Teorica, Universita di Trieste, Strada Costiera 11, 1-34014 Trieste, Italy
Scuola Internazionale Superiore di Studi Avanzati (SISSA), Via Beirut 4, I 340I-4 Trieste, Italy

(Received 2 November 1994)

In a mixed ionic/covalent insulator the dynamical ionic charges are much larger than the static ones.
The phenomenon is particularly relevant in ferroelectric perovskites, and is well understood at the mean-
field level. Here we use a model Hamiltonian to investigate polarization in a strongly correlated, and
partially ionic, insulator. Charge transport is evaluated as a Berry phase. At a critical value of the
electron-electron interaction, the model has a transition from a band insulator to a Mott insulator: the
static ionic charge is continuous across the transition, whereas the polarization is discontinuous. Above
the transition, the anion transports a positive charge.

PACS numbers: 77.80.—e, 71.10.+x, 71.27.+a

The macroscopic polarization of a dielectric material
has been a major challenge to electronic-structure theo-
rists for many years, not only on computational grounds,
but even as a matter of principle. Two main advances [1]
have allowed quantum-mechanical insight (at the mean-
field level) into the phenomenon, and particularly into
the polarization of ferroelectric perovskites [2]. In these
materials a simple ionic model fails: for instance, the ef-
fective dynamical charge associated with an oxygen dis-
placement is of the order of —6, i.e., about 3 times the
nominal static value implied by a completely ionic pic-
ture [2,3] (atomic units of charge are adopted through-
out). Such apparently exotic behavior is simply due to a
large amount of covalence —as demonstrated at the mean-
field level [4]—whereas there is no reason to suspect any
major role played by correlation as far as such materials
are concerned. The present Letter investigates a different
facet of the problem, focusing on the polarization induced
by a sublattice displacement (optical phonon) in a partially
ionic material where both covalence and correlation play
an important role, as is definitely the case for other inter-
esting compounds of the perovskites family, such as, e.g. ,
the parent compounds of the high T, cuprates. We do not
aim at modeling some particular material, while instead
we show quite generally that in a correlated insulator hav-

ing a mixed ionic-covalent character, electron-lattice cou-
pling is responsible for highly nontrivial charge transport.
In the strongly correlated regime, the anions transport a
positive dynamical charge.

In order to make a correlated wave function available,
we schematize the Hamiltonian of our model insulator
with a one-dimensional two-band Hubbard model at half
filling, first proposed by Egami, Ishihara, and Tachiki,
and which —upon increase of the Hubbard U —displays
a transition from a band insulator to a Mott-like insulator
[5]. When we examine the transition from the standpoint
of macroscopic polarization, several exotic phenomena
show up. In particular, we find that the static ionic
charges are continuous, whereas polarization and dynami-

cal charges are discontinuous: therefore the Berry phase
associated with macroscopic polarization [1,6] is the
primary order parameter for the transition.

As usual with Hubbard-like models, the Hamiltonian
may describe materials of different kinds, according to
the actual choice of the parameters. Since we are going
to demonstrate some novel and unexpected qualitative
effects, we are not interested here in exploring a wide
parameter range. The only very essential feature of the
model material we are going to investigate is its mixed
ionic-covalent character, on the top of which we switch
electron correlation on. We take a linear chain with two
atoms per cell, having in mind oxygen (0) and a generic
cation (B). In order to reduce the number of parameters,
when switching electron-electron interaction on, we set
equal values of the Hubbard U on anion and cation. We
do not expect our main qualitative findings to depend on
such a (quite arbitrary) choice. The Hamiltonian of the
centrosymmetric structure is therefore

[(—1)'Ac, c, —to(c, c,+~ + H.c.)j
JO

+ UgnItn, t,

and depends on two parameters besides U: the hopping to,
and the difference in site energies E8 —Eo = 2A. We
restore charge neutrality by assigning a classical charge of
+2 to the cationic sites: this ensures that in the extreme
ionic limit (to = 0 and U ~ 2A) the total static charges
are ~2. The interesting parameter range is for to of
the order of 2A, which warrants a mixed ionic-covalent
character. In the remainder of this study we assume 6 =
2 eV and to = 3.5 eV: this provides a U = 0 bandwidth
of 5.3 eV, which happens to be a realistic value for the
valence bands of a (three-dimensional) partly covalent
polar insulator.

We plot in Fig. 1(a) the static ionic charge as a function
of U (triangles). The calculations have been performed
in 8-site supercells, using skew (quasiperiodic) boundary
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FIG. 1. Static charge of the cation as a function of the
Hubbard U. (a) Centrosymmetric structure (triangles) and
distorted structure (circles) below the transition. (b) Different
computations for the symmetric structure at the transition point
Uc. Empty triangles: 10 k points. Filled triangles: 100 k
points. Empty circles: 30 k points, displaced such as to avoid
k=0.

conditions on each electronic variable, and then taking the
average over the boundary conditions (alias over the su-
percell quasimomenta k), as in Ref. [7]. This ensures that
the U 0 limit is numerically equal to the fully con-
verged thermodynamic limit of the noninteracting calcu-
lation. Typically we have used 30 k points, corresponding
to 120 k points in the unfolded Brillouin zone of the non-
interacting system. The numerical diagonalization was
performed via the Lanczos algorithm, which provided the
ground-state electronic wave functions 'Ito(k) with an en-

ergy tolerance close to the machine accuracy (10 '~to),
with less than 100 Lanczos iterations in all cases. In or-
der to reduce the problem size we have explicitly used the
conservation of the number of spin-up Nt and spin-down
N~ particles. The subspace with N~ = N~ = 4, where the
ground state lies, contains only 4900 elements, thus allow-
ing a large reduction of the full Hilbert space (amount-
ing to 4s = 65536 elements). Use of the center-of-mass
translation symmetry is also possible, but becomes useful
only for larger systems. In an insulating system such as
the present one the size effects are small, and further mini-
mized by k averaging [7]. For a few parameter values we
have indeed performed 12-site calculations, and checked
that the results agree with the 8-site ones to within l%%uo, at
least for the quantities studied here.

We study the dynamical charge transported along the
chain by a relative displacement $ of the two sublattices:
a typical magnitude of interest (as for ferroelectrics) is
gF = 0.05a, where a is the lattice constant. Sublattice
displacements asymmetrically affect the hopping matrix
elements. We assume the other parameters fixed, while
for the t variation we assume the simple Su-Schrieffer-
Heeger [8] linear dependence t = to ~ 2ng. In choosing
the electron-phonon coupling n we are guided again by
what would be a realistic value for describing (at U = 0) a

ferroelectric perovskite, i.e., na = 10 eV. We stress once
more that we use a ferroelectric perovskite only as a guide
to choosing a reasonable parameter set, while at U 4 0
our Hamiltonian aims at modeling an unspecified insulator
having mixed ionic-covalent character, not a ferroelectric
perovskite.

The tight-binding noninteracting Hamiltonian is trivi-
ally diagonalized as

s(k1 = kt6s + 4scccs ka/2 + 16(at)ss1c ka/2. /2)

The band structure is quadratic in g, hence the (linear)
deformation potential vanishes in the centrosymmetric
structure. Nonetheless, the band shift induced by a
displacement of magnitude gF is rather large (about
—0.8 eV at the zone boundary). Again, this is typical for
the mean-field bands of a mixed ionic/covalent insulator
[see e.g., Fig. 1(a) in Ref. [4]].

The static charges are somewhat reduced by the distor-
tion, as shown in Fig. 1(a), circles. When U is increased
to large values, the system undergoes an interesting tran-
sition, from a band insulator to a Mott insulator, first dis-
covered by Egami, Ishihara, and Tachiki, who studied an
identical Hamiltonian for a somewhat different parameter
range [5]. They identified the transition as a discontinu-
ous drop in the static ionic charges of the centrosymmetric
structure, while the charges of the distorted structure were
found continuous as a function of U. With our parameter
values, we find a qualitatively identical discontinuity at
Uc = 2.27tp. However, this is not all. The discontinuity
is present when only k = 0 wave functions are used, as
in Ref. [5], while it disappears as k-point convergence is
approached. A careful analysis is displayed in Fig. 1(b),
which incidentally proves the effectiveness of the k aver-
age [7] in getting rid of spurious finite-size effects. The
apparent discontinuity is due to a level crossing which
occurs at k = 0 and not at k 0 0, as discussed below.
We have explicitly verified that the computed disconti-
nuity is inversely proportional to the number of k points
used. Furthermore, the discontinuity disappears even with
a coarse mesh if the mesh is displaced on the k axis in or-
der to avoid the k = 0 singular point: this is also shown
in Fig. 1(b), open circles.

We are interested in the macroscopic polarization AP
induced by a zone-center optical phonon, when the sites
are continuously displaced from the centrosymmetric
structure (g = 0) to a broken-symmetry one, up to g =
$F. We therefore need to evaluate how much charge is
transported along the chain during a relative displacement
of the two sublattices, in a vanishing electric field [1];
if we choose to keep the origin fixed on a cationic
site, the transport is purely electronic. The electronic
charge transport is best evaluated as a geometric quantum
phase, as first shown —for the explicitly correlated case-
by Ortiz and Martin [6]. The rationale behind the
geometric phase approach is that the dynamical charge
is a quantum-mechanical current —hence a phase of the
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wave function —and bears in general no relationship to
the modulus of the wave function when periodic boundary
conditions are used [1].

The starting ingredients are again the same ground-
state wave functions Wo(k) discussed above. One then
removes the Bloch-like phase upon defining 4o(k) =
%0(k) +exp( —ikx, ), where x, are the site coordinates.
The wave functions 4o(k) so obtained are periodic over
the supercell at any k, and implicitly depend on the
Hamiltonian parameters. Only the dependence upon s
and U will be relevant in the following discusssion.
One then defines the many-body generalization of the
geometric phase first introduced by Zak [9]:

y(g, U) = i dk 4p k —4p k
Bk

where the k integration is over the Brillouin zone of the
supercell. The numerical calculation proceeds as in the
uncorrelated case [1],and the macroscopic polarization of
the distorted structure is

~P = [V(&, U) —r(0, U)]/2~, (4)
defined modulo a polarization quantum of magnitude 1,
corresponding to the transport of one charge over one
cell. This is one-half of the quantum of the mean-field
theory [1],where double occupancy of one-particle states
is enforced.

In the special case where the electron-phonon coupling
u is taken as vanishing, then each site may only transport
its static ionic charge (shown in Fig. 1): in fact, the
polarization calculated as a geometric phase accounts
precisely for this rigid charge transport. Notice, however,
that the two alternative calculations are not numerically
equivalent, thus providing a useful convergence test.
Using 30 k points, the error is smaller than 10 ~. When
n 4 0, the dynamical charge is no longer equal to the
static one, and typically much larger than it in partly
covalent polar crystals.

Let us first illustrate the noninteracting calculation.
The polarization AP is almost linear in $: the relevant
quantities to display are therefore the average dynamical
charge (Z'($)) = ahP($)/g and the linear (or Born)
dynamical charge of the centrosymmetric structure Z' =
aP'(0). The static (cationic) charge is 1.47: charge
transport is enhanced by a factor larger than 4 by the
electron-phonon coupling, thus providing giant dynamical
charges and large polarization values. The actual values
within our model are (Z"(gF)) = 5.95 and Z* = 7.28.

We then switch electron-electron interaction on. The
first interesting phenomenon occurs already in the cen-
trosymmetric model system, where the Zak phase y
changes discontinuously by ~ at the transition point.
Equivalently, one finds a Berry phase of ~ around the
rectangular loop in the (k, U) plane shown in Fig. 2,
since the vertical sides of the rectangle do not contribute
[1,6]. This means that the wave function undergoes a
sign change when transported along the closed path: the

FIG. 2. Rectangular loop in the (k, U) plane which encircles
the level crossing at k = 0 and U = Uc, in arbitrary units. The
projection over the k axis coincides with the Brillouin zone of
the supercell. The cross is at the degeneracy point.

commonest occurrence of such a feature, well known in
molecular physics [10], is due to the presence of a point
of double degeneracy inside the domain. This is precisely
the case here: there are two well distinct states whose
energies cross at the point (0, Uc), whereas at k 4 0 the
ground state is nondegenerate. We have numerically
checked the level crossings by exploiting the metastability
of the Lanczos iteration across the transition; we have also
verified that the ground state is a spin singlet both below
and above the transition. Coming now to the physical
meaning of such transition, we notice that a phase change
of ~ corresponds to the transport of an electronic charge
over half a lattice constant, from an oxygen site to a
cationic one. Notice once more that such transport occurs
without affecting the static charges. This is a virtue
of the ring geometry of our chain, whereas in a finite
linear chain, owing to continuity, charge transport would
obviously affect the static charges of the end sites. We
thus discover that the geometric phase —and not the static
ionic charge —is the primary order parameter for the
transition. One could even straightforwardly generalize
the "band-center operator" of Ref. [9] to the many-body
case, and characterize the transition by saying that the
crystalline ground state is an eigenstate of such an operator
belonging to different eigenvalues below and above Uc.

We then consider the polarization of the distorted
structure, calculated as in Eq. (4). We plot in Fig. 3 the
average dynamical charge (Z*) as a function of U, for
several values of s. In the moderate-U region below
Uc the electron-electron interaction enhances polarization.
Notice that this latter feature is in apparent contradiction
with the fact that the static ionic charges decrease instead
with increasing U. The most prominent feature of Fig. 3
is the divergence at Uc, which has an interesting physical
meaning. The (near) divergent curve, corresponding to
our smallest g, is an approximation to the Born dynamical
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by electron-electron interaction, as long as its strength re-
mains moderate. At higher strength, the system undergoes
a transition from a band insulator to a Mott-like insulator.
At the transition point, charge transport is discontinuous,
and even reverses its sign for a given sublattice displace-
ment. In the highly correlated regime the cation transports
a negative dynamical charge, and the anion a positive one.
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FIG. 3. Average dynamical charge of the cation as a function
of the Hubbard U, for different values of the displacement g.
In order of increasing value of the discontinuity at Uc, the
curves represent g = gF = 0.05a, g = 0.035a, g = 0.0245a,
s = 0.014a, and g = 0.0035a.

charge: the figure then indicates that at U = Uc an
infinitesimal sublattice displacement (starting from the
symmetric structure) induces a finite charge transport,
hence an infinite Z'. At finite s values instead the
polarization, Eq. (4), has a finite and large discontinuity
at Uc. Notice that the Zak phase of the distorted structure
is continuous as a function of U, and therefore both
the divergence and the discontinuity of the dynamical
charges must be traced back to the discontinuity of the
centrosymmetric (s = 0) Zak phase in Eq. (4).

In conclusion, we have investigated here the effect of
electron-electron interaction in the macroscopic polariza-
tion of a mixed ionic/covalent insulator, by means of an
explicit model Hamiltonian, and exploiting the geomet-
ric phase approach. The very large polarization and dy-
namical charges of such an insulator are further enhanced
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