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The phase diagram of the unconventional superconductor UPt; is explained under the long-standing
hypothesis that the pair wave function belongs to the E;, representation of the point group. The main
objection to this theory has been that it disagrees with the experimental phase diagram when a field

is applied along the ¢ axis.

By a careful analysis of the free energy, this objection is shown to be

incorrect. This singlet theory can also explain the unusual anisotropy in the upper critical field curves,
often thought to indicate a triplet pair function, given that the in-plane susceptibility is Van Vleck-like

and the out-of-plane susceptibility is Pauli-like.

PACS numbers: 74.70.Tx, 74.20.De, 74.25.Dw

Unconventional superconductivity is a state of mat-
ter under intense discussion at the present time, in both
high-T, materials [1] and the older heavy fermion su-
perconductors. In this latter class of materials the most
studied and best characterized is UPt;. The d-wave Ej,
state was originally proposed as the pairing symmetry on
microscopic grounds [2]. It posits a two-component gap
function which transforms as (k. k,, k,k;) with correspond-
ing line nodes where the Fermi surface intersects the
plane k, = 0 and point nodes where it intersects the
line k. = k,. Evidence for this specific pattern of nodes
comes, for example, from ultrasound [3] and heat con-
duction [4] experiments. Ej, also explains the pressure
dependence of the phase diagram [5]. FEj,, along with
other two-dimensional representations of Dgj, has a two-
component order parameter (OP). This leads to a num-
ber of unusual predictions which have been confirmed by
experiment, for example, the split transition in specific
heat measurements [6] and the kink in the lower critical
field curve [7]. A two-component OP is usually (though
not always [8]) accepted for UPt;.

In spite of the fact that E;, has the proper nodal structure

have been proposed because of perceived deficiencies
of the theory. One objection usually given is that E;,
cannot explain the observed phase diagram in the field-
temperature (H-T) plane when H is along the ¢ axis [9].
A second objection to E|,, a singlet theory, is that the upper
critical field curve H,,,(T) for H in the basal plane crosses
the curve H.,,(T) for H perpendicular to the basal plane
[10] and that this is characteristic of triplet theories [11].
In this Letter we show that both objections are unfounded.

It has been clear for several years that the E;, the-
ory correctly predicts the exceedingly unusual phase di-
agram in the H-T plane when H is in the basal plane [12].
There are three superconducting phases meeting the nor-
mal phase at a tetracritical point. Two of these, the A and
C phases, are conventional distorted Abrikosov lattices
formed by one of the two components of the OP. The
third, the B phase, consists of two interpenetrating lat-
tices, one formed by each component. The phases are
separated by second-order phase boundaries whose prop-
erties (such as the specific heat jump ACy) may be cal-
culated. These conclusions and the conclusions of the
present paper follow from the free energy density for the

and number of components, a number of alternatives ’ E,, theory:

f=a)(T — T)In)* + ao(T — T,)In,I* + Bi(n-n*)* + Baln-nl?

+ Z (K]D,nle*"qj* + KzD,T],D;T]; + K3D,T]]DJ*7]I*) + K4 Z |Dz77i|2 == (a’()EAT) (ﬁc/2e)
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Here = (7, 7,) is the two-component order parameter, | € and the terms proportional to H2 were first stressed in

and K], Kz, K3, K4, «o, ,81, Bz, ayx, a4z, a4, and €
are constants. The D’s are momentum operators: D, =
—id/dx + (2e/kc)A,, and similarly for D, and D,. Here
A is the vector potential and —e is the charge on an
electron. The coupling of the staggered magnetization to
m is responsible for the temperature splitting AT = T, —
T,. The existence and need for the term proportional to
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the context of a three-component model [13]. The free
energy above is, purely from a symmetry point of view,
generic to all E representations (E\g, E1y, Ea,, and Ej,)
[14]. However, the cross-coupling terms proportional to
K, and K3 are small in the latter cases if basis functions
are chosen with the proper nodal structure [15—17]. Since
we keep these terms and find they are not small, we refer
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to this free energy as the E,, free energy, and note that
our results therefore support this specific representation.

To obtain H., we need only consider the terms quadratic
in i in Eq. (1). When the field is in the basal plane, we
obtain two separate equations for H.,. These two curves
cross, creating the well-known kink in the upper critical
field curve. Hence the A and C phases correspond to
n ~ (1,0) and 5 ~ (0,1). In the B phase we have two
flux lattices: one formed by 7, and the other formed by
ny [12]. The singularities of these flux lattices need not
coincide. We find that the free energy is minimized for an
offset vector for the two lattices which is one-half of a flux
lattice basis vector [18].

When H is in the z direction, the problem of minimiz-
ing the free energy is far more difficult to solve. Let
¢nr be the eigenfunctions of the linear problem. Be-
cause the linear H., equations do not separate into sep-
arate equations for n, and 7,, the ¢, have both x and y
components. When the OP expanded in terms of the
eigenfunctions, 7 = > . .k b, the free energy F is a
quartic polynomial in the coefficients, F = F(cnx). Here
n is a level index (no longer a Landau level index) and
k is the momentum in the y direction. Part of the argu-
ment against E,, runs as follows. At H.,, some of the
cox become nonzero. If we examine the fourth-order term
[cox|?coxcir, We see that the co, produce, effectively, a lin-
ear term in the cx. It is then concluded that no second
transition consists below H,., in this theory, in conflict
with experiment.

However, a more careful analysis of all the possibilities
must be carried out. The energy of the OP configuration
represented by a single ¢, is independent of k. When
many k’s are present, the minimization of F leads
to only some of the cox becoming nonzero at H,
with the formation of the usual hexagonal lattice: ¢, ~
8.0(Hy — H)YV2Cy. Let 277/q be the periodicity of the
flux lattice in the y direction. Then C; = O unless k =
mgq, where m is an integer. As usual, C; = 1(i) for m =
even (odd). A dangerous fourth-order term in F has the
form Bl k. Cor, Cok, Cors C1k,-  Momentum  conservation
implies that the coefficient B}« is only nonzero if
ki — ky + k3 — ks = 0. For an interpenetrating lattice
where the offset vector is one-half of a flux lattice basis
vector, ki, kp, and k3 are integer multiples of g, whereas
k4 is half an odd integer times g. Thus the k’s never sum
to zero and all dangerous terms vanish. The c;’s for the
second lattice never appear in first order or, by a similar
argument, in third order. The second lattice appears by a
second-order transition in the E,4 theory for all directions
of the applied field. This is in agreement with experiment
and in conflict with previous theoretical conventional
wisdom. The transition breaks the flux lattice symmetry
because the lattice now has a basis.

We have plotted the phase boundaries obtained by min-
imizing the free energy in the following approximation.
The eigenvalues of the linear H,., operator are obtained by

a truncation of the infinite matrix. The lowest eigenvalue,
which is a function of H and 7, gives the H., curve. The
next lowest eigenvalue gives a bare inner transition line.
This must be corrected by an effective field term because
the existing lattice lowers the transition temperature of
the new one. This correction involves only one coupling
constant which is obtained by fitting to the data [19]. The
result is shown in Fig. 1. We have not attempted to fit
the data for T < 0.47, since the linear temperature depen-
dence of the first two terms in Eq. (1) breaks down there.

There is no tetracritical point for H = HZ; this is due to
level repulsion. We regard this as a virtue of the theory,
because the experimental data show that to call the phase
diagram isotropic is an exaggeration. The H., curve for
H = Hz does not have a kink, only a flat region well
reproduced by the theory, and the data are consistent with
only two superconducting phases, as the present theory
predicts for this field direction. We find that the phase
diagram for both field directions can be fitted by the same
set of parameters, and the only numerical coincidence
which arises when this is done is that K, = K3 [19].
This is actually a consequence of approximate particle-
hole symmetry, and the fact that it comes out of the fit is
further evidence that the overall picture is correct.

To understand the directional dependence of H,.,, it
is first necessary to discuss the magnetic susceptibility
of UPt;. This issue is complicated by the fact that all
renormalizations involved are not well understood. Since
UPt; is a Fermi liquid, however, the starting point must
be the single-particle states calculated in band theory,
which account very well for the Fermi surface [20]. The
states near the Fermi surface are predominantly derived
from uranium 5f orbitals with j = 5/2. In the isolated
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FIG. 1. Phase diagram when the field is in the z direction. The
lines are the theoretical fits to H., (solid line) and the inner
transition (dashed line). The data points are from ultrasonic
velocity measurements and are taken from Ref. [28], Fig. 3.

4735



VOLUME 74, NUMBER 23

PHYSICAL REVIEW LETTERS

5 JUNE 1995

atom, these would be 6-fold degenerate. Near the I' point
the hexagonal crystal field splits the 6-fold degenerate
state into three doublets: j, = *5/2, j, = *3/2,and j, =
+1/2. The splittings can be inferred from bands calculated
in the local density approximation. Probably the most
accurate to date are the linearized argumented plane wave
results of Wang et al. [20], which give a splitting of order
0.1 eV and a bandwidth of order twice this. The six
(not three, because of the two U atoms in the unit cell)
bands constructed from these states cross the Fermi energy.
These features of UPt; suggest that it is likely to be an
example of a system in which the magnetism is Van Vleck-
like in the plane and Pauli-like along the ¢ axis, which
is expected to be a general feature of hexagonal U-based
systems [21].

The average occupation of the 5f level is near 2. If
we apply a magnetic field, there will be both a Pauli
(intraband) and a Van Vleck (interband) contribution to
the susceptibility. The former is of order (gefr us)>N(er),
while the latter is of order (geir5)?/|By|, where B, is the
crystal field splitting. Here ge¢r is an effective g factor for
the coupling of the field to the total angular momentum of
the band or bands involved. The Landé factor for € = 3,
s =1/2,and j = 5/2is 6/7.

The Van Vleck susceptibility is the interband suscep-
tibility due to mixing of states |a), |8) (say) in different
bands. If H is along the ¢ axis, then the relevant matrix
element (with 7 = 1) is

|<a|Lz + 2Sz|,8>|2 = (36/49)1125113 . 2)

Near the I' point, where states of different j, do not mix,
then the perturbation introduced by H is diagonal, and
the occupation factors then imply that the Van Vleck
susceptibility is zero for this direction. If H is in the
x direction, the corresponding expression for the square
of the matrix element is

KalL, + 28 B)I> = (36/49)(5/2 = j)(5/2 + j. + 1)

(3
if the states o« and B differ by one unit of j, and
is zero otherwise. The Van Vleck susceptibility comes
from four distinct pairs of states: (j, = —5/2,—3/2),
(=3/2,—1/2), (1/2,3/2), and (3/2,5/2), whenever one
of the pair is occupied and the other unoccupied. The
Pauli contribution to yix, on the other hand, comes only
from the pair (—1/2,1/2) when this state is occupied.
In view of the greater multiplicity of the interband
transitions, we expect the Van Vleck susceptibility to be
very important—indeed it very likely dominates the total.
A band calculation which explicitly computes the two
components reckons the Pauli contribution at (15-20)%
[22], in agreement with the multiplicity argument. The
matrix elements above show that a sheet of the Fermi
surface will have an isotropic partial Pauli susceptibility
(L /xk, = 1) if different j, values are well mixed in the
wave function, but will be anisotropic otherwise; j, = 1/2
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on a sheet implies (x//xf, <« 1) and j, =3/2 or 5/2
implies (x%,/xf, > 1). Band calculations show that the
parts of the Fermi surface near the I" point and K point are
predominantly j, = 3/2 or 5/2, while the remaining parts
(near the A point) are well mixed [23]. Hence we expect
a total Pauli susceptibility which satisfies x2 /x}, > 1.

The interaction effects give rise to the large Fermi
liquid enhancement of the susceptibility, which comes
chiefly from the mass term. This is expected to affect
Pauli and Van Vleck terms alike [24].

It is found experimentally that y,, is considerably
larger than y,, at all temperatures, in accord with the
expectation that the Van Vleck contribution is large. The
temperature dependence of x..(7) is anomalous, with a
peak at T = 15 K [25]. This peak is absent in the smooth
curve for x,.(T), and in the specific heat Cy (T") [26]. This
is consistent with the idea that the physical origins of x,,
and y,, are different, and that the density of states at
the Fermi level largely determines y,, but not y,,. Thus
experiments, to the extent that we have them, confirm the
theoretical picture.

The importance of these considerations for the super-
conducting state is simple [27]. Superconductivity affects
the Pauli susceptibility in a drastic fashion. For a singlet
state such as Ej,z, the Pauli term XS(T) is reduced to zero
at zero temperature because it takes a finite amount of
energy to break a pair and magnetize the system. Super-
conductivity should have no effect at all on the Van Vleck
term. Hence we expect a field along the ¢ axis to have the
largest effect on superconductivity. Near T, the slope of
H,.,, larger in magnitude for H in the z direction, is de-
termined by the terms in F which are linear in H. The
different slopes reflect the anisotropic coherence length
and are not directly related to the susceptibility. As H in-
creases, the H? terms become more important and cause
H:(T) to curve down. The anisotropy in the Pauli sus-
ceptibility then causes H.,, to curve more strongly with
the result that the two curves cross. To implement this
quantitatively, we note that the change in the susceptibil-
ity is quadratic in m near T.. The expression for Fignetic
which results is precisely the last three terms, proportional
to H?, in Eq. (1). The resulting fit is shown in Fig. 2. A
similar fit has been performed by Yin and Maki [16] for
the E,, representation.

What these arguments show is that the peculiar
anisotropy of the upper critical field together with the
hypothesis of a singlet superconducting state, such as
E\,, fits together with a particular picture of the magnetic
properties of the system. It would be interesting to
see this picture checked by polarized inelastic neutron
scattering which, in principle, can determine the different
tensor elements of y, and whether these have a gap (Van
Vleck) or not (Pauli).

This sort of measurement thus bears on the argument
that the anisotropy in H., points to a triplet state. This
argument is based on the idea that the observed anisotropy
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FIG. 2. The crossing of the H., line when the field is the basal
plane (solid line) and the H,., line when the field is in the
z direction (dashed line). The data points are from ultrasonic
velocity measurements and are taken from Ref. [28], Fig. 3.

in the total susceptibility is also reflected in the Pauli
term, that is y% =~ 2xf. According to the arguments
presented here, this is somewhat unlikely. In any case,
new susceptibility experiments could help distinguish
between the alternatives.

We conclude that the E;, theory can account for
two crucial aspects of the phase diagram of UPt;: the
existence and shape of the inner transition line for H
along the ¢ axis, and the peculiar anisotropy of the upper
critical field. This removes the major objections to this
theory, which otherwise gives a good account of the low
temperature thermodynamics, including the position of the
gap nodes, the tetracritical point, and the dependence of
the phase boundary positions on applied pressure.
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