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New Phenomena in Josephson SIXIS Junctions

A. F. Volkov
Institute of Radioengineering and Electronics of the Russian Academy of Sciences, Mokhovaj a II, Moscow I03907, Russia

(Received 5 December 1994)

We analyze the dc and ac Josephson effects in S INISb junctions in which an additional bias current
flows in the N layer. The case of low temperatures and voltages (eV, T « 6) is considered in the
dirty limit. We show that the critical Josephson current may change sign, and the considered SINIS
junction may become a rr junction if the voltage drop across the N/S, interface exceeds a certain value
(eV& ) 6/~2). The ac Josephson effect may arise even if the current flows only through the N/S„
interface, whereas the current through the Sb/N interface is absent.

PACS numbers: 74.50.+r

In recent years, considerable attention has been at-
tracted to studying SINIS junctions (S, I, and N denote
a superconducting, insulating, and normal metal layer, re-
spectively). In particular, measurements have been car-
ried out on S-Sm-S junctions which behave like SINIS
junctions (Sm is a heavily doped semiconductor with a
three- or two-dimensional electron gas) [1—6]. The role
of insulating barrier is played by the Schottky barrier
which arises at the interface between the superconduc-
tor and the semiconductor. A mismatch between elec-
tron parameters such as the effective masses and Fermi
momenta in Sm and S leads also to an additional scat-
tering at the interface. The SINIS junctions in which a
normal metal or a semiconductor are used as the mid-
dle layer were studied to clarify, for example, the mecha-
nism of the charge transfer through the S/N interface at
low voltages (eV & 5) and temperatures (T « b, ) [1—8].
Phenomena connected with Coulomb blockade and parity
effects may appear in SINIS junctions with a very small N
region [9,10]. But even if the size of the N region is not
small enough to observe these phenomena, some new pe-
culiarities arise in these systems at low temperatures and
voltages. It has been established first in Ref. [1(b)] that
the subgap conductance of the SIN contact (Nb/InGaAs)
increases with decreasing V and reaches a value compa-
rable with the conductance of the contact in the normal
state. The authors of Refs. [4(b),7,8] observed an oscilla-
tory dependence of the subgap conductance in SINIS junc-
tions, shown schematically in Fig. 1(a), as a function of an
applied magnetic field H. An explanation for the phenom-
enon of the subgap conductance enhancement and its de-
pendence on H has been suggested in Refs. [4(b),11—16],
and this enhancement was interpreted in Refs. [1(b),11—
13] as a result of an anomalous proximity effect enhancing
at low voltages V and temperatures T. The condensate
current induced by an external magnetic field suppresses
the proximity effect. Because the condensate momentum
is an oscillatory function of the magnetic field H thread-
ing the superconducting loop, the subgap conductance os-
cillates with increasing H also.

One can formulate an inverse problem: how the current
through the N layer will influence the Josephson effects in
the system shown in Fig. 1(b) [our approach is applicable
also the system in Fig. 1(a) if the distance between
superconductors S and Sb is less than the coherence
length gz]. Note that the voltage Vt, between S and Sq
(the potential V, is taken to be zero) may be zero, whereas
the potential of the N layer, V&, is not zero. In this Letter
we analyze the inhuence of V on the Josephson effects in
a SINIS junction [17]. In particular, we will show that the
ac Josephson effect appears even in the case when there is
no current through the superconductor Sb (I = 0).

We consider the system shown in Fig. 1 and assume
that the thickness of the N layer is less than s~. We
also assume the dirty limit. Averaging equations for the
Green's functions G ~ ~ over the thickness of the N layer,
de, we obtain [13(b)]
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FIG. 1. Schematic representation of SINIS junctions. Geome-
try shown in (a) was used for measuring oscillations of
the subgap conductance of the SIN interfaces in an applied
magnetic field. ln this case the superconductors 5 and Sb
were connected by a superconducting loop.
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e, [G, G, ] + eb[G, Gb] + ie[cr„G]
—(y/2) [tT, Go.„G] = 0. (1)

The indices R(A) are omitted for brevity. Here e, b
=

pD/(2R, bdz) are characteristic energies related to the
barrier transmittance, y is the depairing rate, R b are
the resistances of the S, b/N interfaces per unit area,
and D and p are the diffusion coefficient and specific
resistance of the N layer. We suppose that the barrier
transmittances are not high and the condition e b (&
b, ds/d~ is fulfilled. Then the Green's functions G, b in
the S electrodes can be considered undisturbed by the
proximity effect. The electron-phonon coupling constant
in the N layer is assumed to be vanishingly small, so that
the order parameter 6& in the N layer is equal to zero.
In order to calculate the supercurrent, we must determine
the Green's function G = Gtr, + F = Go., + i(F,o, +.
F~tr~) in the N layer. Solutions for G can be found from
Eq. (1) in two limiting cases: (a) y » e, b (low barrier
transmittances) and (b) y «e, b « b, (ds/d~) (moderate
barrier transmittances) [13(b)].

In the first case we obtain G~("l = +.[I + (F~("))2/2]
and

F'"'= = (.F. + "F.)""'/( + y) (2)

FR(A) t tT g/gR(A) F ( sjn@ +
cos@)g/gR(A) gR(A) [(e ~ t0)2 g2]1/2

is the phase difference of the order parameter between S
and Sb. The excitation spectrum in the N layer remains
gapless, although it has peculiarities at e = y and e -= A.
In the second case (b) we obtain for e « 5

G = e/g„F, = (eb/g, ) sing,

Fy = (e, + eb COSQ)/g, . (3)

Here g, = (e2 —e2)'/~, e~ = (e~ + eb + 2~, eb X

cosg)' is an energy gap in the excitation spectrum in

the N layer induced by the proximity effect (recall that
Az = 0). The energy gap eg oscillates as a function of P.

The condensate current through the S, /N interface is
determined by the formula

Is, = —(w/16R, ) Tro., de[(F F, —F"F,")(fo + fo, ) + (F F," —F"F,)(fo —fo, )],

where w is the width of the S layers, and fo, fo, are
the distribution functions in the N and S, layers (they
are odd functions of e). We assume that they have the
equilibrium form, e.g. , fo = [tanh(e + V&)p + tanh(e-
Vb)p]/2 and fo, = tanh(ep) (the electrical charge is
included into V). This assumption is correct if e, b «
max(r, ', D/w2), where r, is the energy relaxation time
[13(a)]. On the other hand, solutions (2) and (3) are
correct provided that the width w is large as compared
to gs.'w2 » D/A. Calculating the integral in Eq. (4),
we obtain

Is, (V~)R = coin(A —V~)/(Vjv + y ) sin@,

[20,21]):

Idi ss
= Jqp + Jint ~ (7)

Here Iq~ = (w/2R, ) f de vv, (e) [f~ —f~,] is the quasi-
particle current through the S, /N interface; v and v, (e)
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We assumed for simplicity that the temperature is low
enough: T «y (a) and T « e, b (b). Here I, (0)R =
2eo In(2b, /eg), 6I, (V~)R = —2eo@(V~ —e~) In[(V~ +
(V~ —eg)' )/eg] at. Vb && 5, and BI,(V~) R =
—2eo]n[2AV~/eg(b —V~)'/ ] at V~ && eg', eo =
(e, + eb)/2, R = (R, + Rb)/w is the total resistance of
the interfaces. In Fig. 2 we show the dependence of the
critical current on Vb. One can see that I,(V )cbhanges
sign at V —= b, /~2. The condensate current through the
Sb/N interface is determined by the same formulas (5)
and (6) if Vb is replaced by Vb —Vb .

Now we calculate the dissipative component of the
current Id;„It consists of two . parts (see, for example,
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FIG. 2. Normalized critical current 1,(Vb)/I, .(0) vs normalized
voltage drop across the N/S, interface, eV&/5, for a weak [case
(a), solid line] and moderate [case (b), dashed line] barrier
transmittances; voltage drop across 5, and Sb is taken to be
zero. The following parameters were used: y/5 = 0.1 (a) and
eg/5 = 0.1 (b).
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are the density of states in N and S, . The functions f~,
and f &

are the distribution functions in S, and N; they
are even functions of e and equal in equilibrium to f~ =
[tanh(e + V)p —tanh(e —V)p]/2 and f&, = 0 because
we put V„= 0. At low temperatures and low voltages
(V & 6), the current I„„is exponentially small. The cur-
rent I;„, is known in the theory of the Josephson effect as
the current of the interference between pairs and quasipar-

ticles. It leads to the subgap conductance anomaly and
can be expressed through F ~ ~ in the following way:

I;„&, = (w/16R, ) Tr de (F + F")

Using Eqs. (2) and (3), one can easily find I;„, As.suming
again the low temperature case, we obtain for I;„,

arctan(V~ /y)
I;„~aR = 2ep(p + cosf) X

( / )@( —IV~I) + (~/2)&(IV~I —e, )

(case a)
(case b) . (9)

Here p = e, /eb. Formulas for I;„,b have the same form
with p and V& replaced by p

—= p ' and Vb —V,
respectively.

The conservation law for the currents through the S /N
and Sb/N interfaces reads

I = I, b sin@ + (p + cosp)A(Vb —V~)

+ (Vb VN)/rb + Cb 8 (Vb VIV),

I —I~ = I, , sin@ + (p + cos@)A(V&)

+ Vv/r, + C, B, V~. (10)
Here the function A(V~) is defined in Eq. (9); the third
term describes either a small quasiparticle current or a
current through possible shunt and microshorts. The last
terms are the displacement currents. Because the distribu-
tion functions are assumed to have the equilibrium form,
the voltage Vb is connected with the phase difference
by the Josephson relation: 2eVb = r3, $(Ib = 1). Equa-
tions (10) describe the system under consideration.

Consider first the dc Josephson effect (8, @ = 0). Ex-
cluding V~ from Eqs. (10), we obtain for the case of
identical interfaces I = Iv/2 + l, (V~) sin@. This rela-
tion connects the currents I and I~ with the phase differ-
ence. As noted above, the critical current changes sign at
V~ ) b, /~2, and an instability of a state with ~P ~

( vr/2
must arise in the systems under consideration.

The analysis of the ac Josephson effect is more com-
plicated because, when deriving expressions for I~ and

I;„„weassumed that voltage temporal variations are slow.
Therefore, we will restrict ourselves to the analysis of the
case (a) and assume mainly that the voltages are small
enough: (Vb, V~) && y. Let the current Ibf be absent.
Then for identical S/N contacts, we find from Eq. (10)

I = I, sin@ + 2(ep/R) (1 + cosP) arctan(B, @/4ey)

+ B,P/4er + CB, @/4e. (11)

If 8, @ « y, Eq. (11) is reduced to an ordinary equa-
tion for a tunnel Josephson junction taking into account
the displacement and interference currents [20,21]. If

B,p » [y, I, /r), the voltage Vb = 8, @/2 does not de-
pend on time in the main approximation, and the l(Vb)
characteristic has the form I = wrap/R + Vb/r, that is, an
excess current appears at y « Vb « A.

Let the current I equal zero. Then, for small voltages
(~B, @~ & y), we obtain again Eq. (11) in which the cur-
rent I and the term arctan(B, P/4ey) should be replaced
by IN/2 and—8, @/4ey, respectively. Therefore, even if
the current flows only through one superconducting elec-
trode (S,), the ac Josephson effects arise in the system at
I~ ) 21, . If both currents (I and Iz) fiow in the system,
one can control the critical current and other character-
istics of the system varying the current I& in the middle
electrode. Note that the Josephson effect in the absence
of the current may arise in an usual tunnel Josephson SIS
junction when the superconducting electrodes are main-
tained at different temperatures (the Josephson current is
compensated for by the thermoelectric current) [22].

In summary, we have analyzed the behavior of a
S,INISb Josephson junction in which an additional bias
current can Aow in the N layer. It is shown that the
critical current depends on the voltage V~ between N and

S, and can change sign at a certain value of V~. This
effect is observable under some restrictions on parameters
of the system. In the case (a) the interface transmittance
is small (ep « y « 5) and the width of the S layers
must satisfy the condition w2 » D/5 In the case (b. )
restrictions on w are more severe: D/5 « w « D/ep.
We note that the suggested method for obtaining
contacts differs from those proposed earlier (see, for
instance, [23] and references cited therein) because it
allows one to transfer a conventional Josephson junction
into a ~ contact by varying the electric potential at the
middle electrode. The ac Josephson effects may arise
even if the current fiows only through the N/S, interface
and there is no current through the Sb electrode.
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