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I study the 0,2 transition within the Ginzburg-Landau model, with I-component order parameter
1 find a renormalized fixed point free energy, exact in m ~ ~ limit, suggestive of a second-order

transition in contrast to the general belief of a first-order transition. The thermal fiuctuations for 0 4 0
force one to consider an infinite set of marginally relevant operators for d ~ d„,. = 6. I find d&,. = 4,
predicting that the off-diagonal long-range order does not survive thermal fluctuations in d = 2, 3.
The result is a solution to a critical fixed point that was found to be inaccessible within e = 6 —d
expansion, previously considered by Brezin, Nelson, and Thiaville [Phys. Rev. B 31, 7124 (1985)], and
was interpreted as a first-order transition.

PACS numbers: 74.20.De, 64.60.Fr

F[P,A] =

(V' x A —H)'+ (1)
87T p, p

where rp —(T T )/T, tip = 2e/Itc, and p, p is the
magnetic permeability of the normal metal and is close
to unity. Although it is generally believed that in mean
field the transition is of second order, even this theory
is not on completely firm ground. The issue is that at
the transition two apparently unrelated symmetries are
supposed to be simultaneously broken: the translational
symmetry is broken by the formation of the Abrikosov
lattice, accompanied by breaking of U(l) gauge symmetry
leading to phase coherence and superconductivity. While
it is easy to see the diverging uniform susceptibility (k =
0), associated with the formation of phase coherence, no
corresponding divergent susceptibility for the formation of
a lattice (much less a specific triangular lattice) has been
demonstrated. Following Abrikosov, what is generally
demonstrated is that a periodic solution (e.g. , triangular)
is lower in energy, globally, than a lattice of another
symmetry (e.g. , the square one).

The Gaussian fIuctuation corrections only to the spe-
cific heat around H, 2 (valid only outside the critical re-
gion) were first studied in the pioneering work by Lee
and Shenoy [5], followed by a more sophisticated self-

The nature of the normal-to-superconducting (NS) tran-
sition is substantially more challenging than the neutral
superfIuid transition and has remained controversial for
many years. While there is now finally a general consen-
sus on the nature of the zero field NS transition [1—3],
the finite field NS transition is much less understood. As
discovered by Abrikosov [4], in mean-field theory, upon
lowering T the NS transition takes place at H, 2 [T,(H)],
and the superconducting order parameter develops a trian-
gular array of fIux-line vortices, a transition believed to be
describable by the Ginzburg-Landau free energy

d'r l(~ + tqoA)AI'+ rolkl' + —go(lgl')'
2

consistent method and expansions in the range of the non-
linear interaction [6]. These results for the specific heat
are consistent with my more general and controlled analy-
sis of the full critical behavior.

Although a form of freezing into a 3D lattice takes place,
as was first emphasized by Brezin, Nelson, and Thiaville
(BNT) [7], Landau's general argument for the first-order
freezing transition is circumvented by the fact that in mean
field both of the symmetries are broken simultaneously and
the amplitude of P is small, preventing the density from
jumping discontinuously. Since it is likely that this will
no longer be the case once thermal fluctuations are taken
into account (the formation of the lattice will be depressed
below H,2, where amplitude of P forms), it is generally
believed that the transition will become first order. [7]

Thermal fiuctuations were first studied by BNT [7] in

e = 6 —d expansion about the upper critical dimension
d„, = 6. They found that fluctuations force one to con-
sider an infinite set of marginally relevant quartic opera-
tors and derived a one-loop functional renormalization
group (RG) recursion equation for the quartic coupling
function. However, numerically analyzing these integro-
differential equations, they were not able to find a fixed
point function within the e expansion. Consistent with
their physical argument, BNT interpreted the runaway RG
fIows toward a negative coupling function as a Auctuation-
driven first-order transition.

In clean samples the experiments observe a first-order
melting transition of the Abrikosov vortex lattice [8],
consistent with the conclusions of BNT. However, more
recent experiments have found that this line of the first-
order transition terminates at a critical end point, at a
well-defined magnetic field, giving way to a second-order
transition [9].

In this Letter, I study the H, 2 NS transition by general-
izing the GL theory to a large number I of complex com-
ponents of the superconducting order parameter P; and
solve it in the I ~ limit in arbitrary dimensionality.
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I find a second-order transition in contrast to the general
belief of a first-order transition, which, however, only sur-
vives for d ~ d~, = 4, and therefore predict that the su-
perconducting phase coherence does not survive thermal
fluctuations in physical dimensionality (d = 2, 3).

Near 0,2, considering strongly type-II superconductors
allows me to ignore gauge field fluctuations. I take A =
~H( y, x;0—~), as the symmetric gauge d-dimensional
generalization of H field perpendicular to the x-y plane.

I solve the problem in the lowest Landau level (LLL)
approximation valid near H, 2. In this case the quadratic
part of the Hamiltonian Eq. (1) can be diagonalized
by P, (z, Z; r~) = @,(z; r')e ' ', where @;(z;r) is an
arbitrary m-component analytic function of z = x + iy
(not to be confused with the z coordinate), ri denotes the
(d —2)-dimensional space perpendicular to the x-y plane
defined by the H field, and l —= I/QqH is the magnetic
length. Substituting this form for P; into Eq. (1) I obtain

(IVi@ I' + tol@ I') +— '
go(Ized z2l) lk (zi. r~)l l@j(z2 rJ. )l

(2)

where to = rp(T) + qH ~ [H —H, 2(T)] ~ [T —T, (H)]
changes sign at the mean-field theory (MFT) transition
and the interaction coupling constant go has been gen-
eralized from gp6 (z~ —z2) to an arbitrary short-range
function gp(lz~ —z2I), evolution of which to a fixed point
function (due to thermal renormalization) is the main
result of this work. The fact that one must keep track of
the whole function g(lzl) rather than expanding can be
seen as follows. In order to reach the NS transition fixed
point, while r& is treated as usual (distances rescaling un-
der dilation by b) as r& r~b, z must remain unrescaled

z, in order to preserve under rescaling the form of
the quadratic part of the free energy. If z were rescaled
with any power of b, the e ~'I / ' would reduce the
free energy to zero, as b ~, clearly an unsatisfactory
situation. The nondimensionality of z therefore leads to
an infinite set of quartic coupling constants, labeled by z
and encoded into the g(lzl) coupling function. Physically
this behavior is due to the fact that while the correlation
length g& diverges (I rescale rz to keep up with this
divergence), the q = 0 wave vector correlations in the

x-y plane grow but are eventually cut off by the magnetic
length l. All the long-wavelength modes labeled by z
are equally important in contributing to the divergences
in k& 0 susceptibility and other correlation functions,
and therefore must be treated on equal footing. Rescal-
ing of z zb would amount to looking at the theory
characterized by a vanishing magnetic length I ~ l/b or
equivalently divergent 0 field, a regime in which I do not
expect a finite T, NS transition.

I now follow a standard large m treatment I 10], which,
surprisingly, can be easily generalized to the problem
at hand. Via a Hubbard-Stratanovich transformation I
introduce an auxiliary field g(z, r~) that linearly couples to
lg;(z), ri)l and has a bare propagator go(Ized

—z2l) with
the inverse defined by f d zgo '(lzi —zl)gp(lz —

zeal) =
6&2&(z, —zz). Anticipating a breaking of symmetry along
one of the t' directions, I take P; = (o.m, ~ ) and integrate
over the m —1 complex components (Goldstone modes to
be) of 7r . For gp(lz~ —z2I) of order 1/m, in the largeI limit, the fluctuations in the fields o. and g can be
ignored (they lead to 1/m corrections), and I obtain the
exact fIuctuation-corrected effective free energy

FI:~,x] d"'rz d z~ e " t ' a*I —V~ + tp + ~(z~, r~)]o z2 gp '(Ized —z21)x(«, «)x(z2, ri)

+ 1 ——Trlog —V' + to+ g z, r
1 2

(3)

To make analytical progress in evaluating the free energy,
I will make the following choice for the low energy ansatz:

(z —z;),

r(z, ri) = m,

and now explain the physical motivation behind this
choice. Obviously, taking tr(z, r&) to be uniform along
r& lowers the free energy. Since I want to describe the
transition into an Abrikosov-type of phase, i.e., a phase of
periodic arrangement of vortices characterized by o.G(z)
(probably a triangular lattice given by a global minimiza-

tion procedure), I take o.(z) to be proportional to this a
priori assumed low T phase. The complex amplitude
coefficient o.~ characterizes the level of order in this
phase. Since the square of the superconducting order
parameter, IP(z)l, is essentially constant (aside from a
lattice of zeros), f d2zlo. (z)I2e ' t ' = AanG = Ap, is
extensive with the x-y area A (a is the reduction factor
in the superfluid density p~ due to zeros). Since ~(z, r &)
couples to Io.(z, r~)I, with equivalent thermal averages,
it is a good approximation to take it to be a constant,
as I have done in Eq. (4). Certainly the nonuniformity
coming from the zeros in ~p(z) will lead to numerical
corrections, but it is unlikely that they will result in any
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no —b(g —tp) + a (2~)" k' + g-2 =0,
(6)

where b = 2/(ma) f d z gp '(lzl), and I defined the cor-
relation length g by g = tp + ~p. For T ( T, (H),
ao ) 0, and Eq. (5) implies a divergent correlation length

(g 2 = 0) in the Abrikosov phase. Equation (6) then
leads to the order parameter nG, vanishing as a power
law with the reduced temperature, as T, (H) is approached
from below

ao [t~ tp(H, T)] [Tc(H) T] P=2, (7)

where t, = —a ' f[dd'ki/(2')"'](I/k2~) is the shift in

T, (H) due to thermal fluctuations. I note that for d =
d& + 2 ~ 4 the thermal suppression of T, is divergent
and therefore identify the lower critical dimension as
d~, = 4. This is consistent with conclusions about d~,

by Moore based on completely different arguments ap-
plied in the ordered Abrikosov phase [11]. Equation (7)
implies a vanishing of the superfluid density as T, (H)
is approached from below as p, —

l

nial

—[T,(H) —T]
For T ) T, (H) the solution is characterized by a finite g.
Equation (5) then implies no = 0 and the state is normal.
Equation (6) then describes how the correlation length $
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modification of the universal and qualitative properties of
the NS transition.

Another important point is that I am obviously assuming
the form of the low-T phase, drawing on the knowledge of
a lattice solution. This is in the spirit of Landau's theory of
freezing where the effective theory of the transition is for
the slowly varying coefficient pG of the particular Fourier
component of the full density at which the ordering is to
occur. As in the theory of freezing, it is an exceptionally
difficult task to analytically demonstrate a local instability
in this finite wave vector G ordering, which is brought
about by the repulsive interactions. For the theory of
freezing one does a separate difficult calculation within
the disordered (liquid) phase to show that interactions lead
to a peak in the structure function, approximately at the
inverse of the interparticle separation, this peak being the
precursor of the inevitable Bragg peak. The analogous
task of showing (within the GL theory) a susceptibility
to order at a finite in-plane wave vector, in, for example,
the Abrikosov lattice, has not, to my knowledge, been
performed analytically, even at the MFT level. Instead,
one simply assumes a periodic solution and picks the
global lowest energy one. Since the fluctuation-corrected
free energy in Eq. (3) is significantly different from the
MFT one, it is possible that upon minimization it will lead
to a lattice of a different form from the triangular one.

Having "apologized" for my choice of the ansatz, I
now minimize F in Eq. (3) with respect to nG and gp,
obtaining the saddle point equations

no/ =0,

diverges as T, (H) is approached from above

6 —[T —T, (H)] (8)

where for d ) d„= 6 the MFT is accurate and v = z,
].

while for d~, ( d ( d„ thermal fluctuations are divergent
and lead to v = 1/(d —4). These are, as expected,
the usual large m exponents in the (d —2)-dimensional
theory, with the dimensional reduction occurring due to
the H field quenching of the kinetic energy in the x-y
plane, perpendicular to it.

I now turn to the main focus of my work, that is, the
effective free energy that describes the fluctuations about
this large m solution. In the large m limit, the renormalized
quartic interaction gR(lz~ —z2l) is the quantity that char-
acterizes the fixed point of the NS transition. One way
of computing it is to go back to the free energy in Eq. (2)
and to simply perturbatively resum all the loop diagrams to
lowest order in 1/m, which renormalize the bare quartic in-
teraction gp(lzi —z2l). Equivalently, given the formalism
that I have set up above, I can simply compute the renor-
malization of the quadratic term in g by expanding the
free energy in Eq. (3) to quadratic order in fluctuations of
g about the saddle point value go. Either approach gives

gR(q ki t) = gp(q)
1 + mII(q, k~, t)gp(q)

'

II(q ki t) = I(ki t)e

where q is a wave vector in the x-y plane, II(q, k&, t) is the
Fourier transform of the polarization bubble with respect
to the complex z (x-y) coordinate, and

d ~pg 1
I(ki, t) = „~,(11)(2~)"' (p' + t) (I p —k I' + t)

I(ki, 0) = c(d)ki

where in Eq. (12) I(k~, t) is evaluated at T, (t = 0), and
c(d) = [I (2 —d /2) I (d /2 —1)2/I (d —2)]/(4~)"'~~,
diverging as 1/(6 —d) near d„„consistent with the e ex-
pansion of BNT. The interaction function gR (q, k~, t = 0),
at T„ is displayed in the inset of Fig. 1 as a function
of q, for a fixed small k&, large m, and for a choice of
short-range microscopic GL interaction gp(q) = e
with a = l = 1. It shows a peak at a finite wave vector
q = G = Min(l 'Ql ink~ l, a '), as one might expect for a
continuous freezing transition, with a peak possibly being a
precursor of the eventual Bragg singularities, not captured
by the large m theory. In real space gR(r, ~, k&, t = 0) ex-
hibits oscillations with a 1/r power law falloff, reflecting
correlations building up in the x-y plane. Equations (9)—
(12) contain the information about the MFT fixed point
(valid for d ) 6), the new Heisenberg-type fixed point,
characterizing the NS transition in the presence of thermal
fluctuations, and about the crossover between them as a
function of the reduced temperature t and length scale
k&, labeled by the x-y wave vector q. Right at T, (H),
for fixed q, II(q, ki, 0) —k~' diverges at long scales and
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MFT crosses over (with a crossover exponent @ = —e)
to the new fixed point summarized by Eqs. (5)—(8), and
with the effective interaction for fluctuations given by a
completely universal function (actually a distribution),
independent of the bare interaction go(~zi —z2~),

gR(q, ki, O) =
mII q, ki, O

gg(lzi —z21, ki, 0) = gki. & (zi —z2)e "', (14)
where g = [47rl /m] jc(d). This form of gR is valid for
arbitrary d, but for 6 —d = e « 1 gives the fixed point
function of BNT RG equations, in m ~ ~ limit [12].

The fluctuations near H, 2 at the NS critical point are
described by the effective free energy of the same form as
Eq. (2), but with go replaced by the universal function

gR from Eq. (14). Because g couples to ~/~2, it is
easy to show that its renormalized propagator g& is also
the superfluid density susceptibility. This allows me to
extract the specific heat n = —(6 —d)/(d —4) and the
correlation length v = 1/(d —4) exponents, consistent
with the value of v obtained from the saddle point
equations. Note that because of the unusual scaling of
lengths at this critical point, discussed in the introduction,
the standard relation n = 2 —d v is replaced by an easily
derivable relation appropriate for this problem, n = 2—
(d —2) v. The screening by Iluctuations has removed the
MFT specific heat divergence [aMFT ——(6 —d)/2 ) 0]
and replaced it by a nondivergent nonanalyticity in k&
with n ( 0. This suggests by a variant of the Harris
criterion that the infinitesimal short-range point disorder is
irrelevant for this finite field NS transition [12]. Similar
arguments suggest that the transition is destabilized by the
long-range disorder such as twin planes and the artificially
introduced columnar defects [13].

Two of the important remaining problems are the
demonstration of a diverging susceptibility to order into
a lattice of vortices (i.e., divergent $,Y at q —G), and
the computation of the 1/m corrections. Preliminary

-0.02 ~

FIG. 1. ge(r„~, k~, t = 0) at T, for fixed ki exhibits density
correlations in the x-y plane manifested in oscillations at a scale
G '; the inset shows gii (q, k~, t = 0).

calculations indicate that these problems might be related,
and that the renormalized interaction in Eq. (14) can
lead to an instability to a vortex lattice, when the 1/m
corrections to the effective free energy are computed [13].

In summary, I have presented a large m theory of
a second-order H, 2 NS transition for arbitrary d and
found the fixed point effective free energy describing the
transition. Since the physical dimensionalities d = 2, 3
are below the d~, = 4, the transition does not survive
thermal fluctuations in the limit of large m. It is, however,
possible that for the physical value of I = 1, that the true
lower-critical dimension will be reduced below d = 3,
allowing the finite-T, continuous NS transition to persist.
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Note added. —After this work was submitted for publi-
cation I became aware of an interesting but unfortunately
relatively unknown paper by I. Affleck and E. Brezin,
Nucl. Phys. B257, 451 (1985), that also treats H, 2 tran-
sition in m oo limit. In contrast to my work, where I
focus on the fluctuation part of the renormalized free en-

ergy, that work studies only the I = oo saddle point equa-
tions to the constant part of the free energy [my Eq. (3)].
Affleck and Brezin argue that there is no solution to the
saddle point equations near H, z, interpreting it as a first-
order transition, in contrast to my conclusion. We have
not been able to reconcile a possible absence of a saddle
point solution and my unambiguous finding of the fixed
point free energy [determined by Eq. (14)], usually in-
dicative of a second order transition.
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