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Quantum Interference of a Single Vortex in a Mesoscopic Superconductor
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We propose an Aharonov-Bohm-type interference experiment for a vortex in a superconductor to
directly test the vortex velocity part of the Magnus force. Based on the recent advances in the
nanofabrication technology as well as the progresses in both theoretical and experimental studies of
vortex dynamics we show that this conceptually simple experiment can be easily realized. If established,
the proposed vortex interference experiment not only demonstrates the quantum coherence phenomenon
at a macroscopic level, but also has a potential for technical applications.

PACS numbers: 74.20.De, 03.65.Bz, 74.50.+r, 74.60.Ge

It is commonly accepted that vortices in a 2D (or
straight vortex lines in a 3D) superconductor behave
as charged particles in a magnetic field [1]. In the
equation of motion governing the vortex dynamics, the
Magnus force has recently been shown, first at zero
temperature [2] then at finite temperatures [3], to be an
intrinsic property of type II superconductors, insensitive
to details such as disorder and pinnings. Although there
is an active theoretical exploration of its consequences
[4,5], experimentally the Magnus force has not been well
established yet. Many of the experimental attempts of
demonstrating its existence come from the Hall angle
measurements in the mixed state of superconductors. In
those measurements the Hall angle is, however, usually
small, and sometimes changes its sign as a function of
the temperature and the magnitude of an applied magnetic
field [6]. The latter is in an apparent disagreement with
a simple minded application of the Magnus force, and
could be interpreted as evidence against its existence.
It has been shown elsewhere that the Magnus force is
actually consistent with the Hall angle measurements after
a consideration of the many-body correlation and pinning
[7]. However, this can only be viewed as an indirect
confirmation, because the Hall angle depends strongly on
the details of a sample, which are unfortunately not well
controlled. The purpose of the present paper is to propose
a vortex interference experiment which can directly test
the Magnus force. The proposed interference experiment
is the usual two-slit type [8], with the interference pattern
controlled by tuning the Magnus force, similar to the
case in the Aharonov-Bohm-type experiment [9]. We
will show that our design is simple considering the
modern nanofabrication technology, and it is also feasible
with the present understanding of vortex dynamics in
superconductors. In the following we will first describe
the proposed experimental setup, then discuss important
relevant issues such as the vortex damping and a possible
quantum electrodynamic interference effect due to the
magnetic Aux carried by a moving vortex. It should be
emphasized that if the proposed interference experiment
is established, it demonstrates the quantum coherence
effect at a macroscopic scale. Therefore it has a profound

fundamental implication. Furthermore, in views of the
great technical applications of all the known quantum
interference phenomena, the vortex interference effect
should have its own preferable ones.

The equation of motion for a vortex in a 2D supercon-
ductor with mass m at position r is

mr' =
~ q„hp, (r, T) [v, (r) —r]

X z + F„—fair + f(t). (1)
Here h is the Planck constant, p, the 2D superAuid
electron density at the position of the vortex, T the tem-
perature of the superconductor, v, the superelectron veloc-
ity, g the vortex viscosity, F„ the pinning force, f(t) the
fluctuating force related to the friction by the fluctuation-
dissipation theorem, and q = ~1 the vorticity. The vor-
tex mass has many contributions, and its precise value is
not known yet. Because a steady state will be considered,
the vortex mass is not relevant as long as it is not infi-
nite, which has been shown to be the case [10]. The first
term on the right-hand side of Eq. (1) is the Magnus force
[1—3]. The pinning force in principle can be calculated
microscopically [11],but in general it is a quite compli-
cated procedure. What is needed here is of a simple type:
a guided motion. The damping is important in our pro-
posed interference experiment, and we will show that it
can be very small with a proper choice of material param-
eters. Its discussion is deferred to after the description of
the proposed experimental setup.

The discussion of the quantum interference requires us
to extend the classical equation, Eq. (1), to the corre-
sponding one in quantum mechanics. This can be made,
for example, by following the formulation of Caldeira
and Leggett [12] for the dissipative quantum dynamics
as done in Ref. [4]. This formulation goes beyond the
linear velocity damping in Eq. (1). Therefore a more
general discussion of dissipation and dephasing can be
conducted within it, which is the case for the damping
contribution outside of the vortex core as discussed be-
low. However, in order to illustrate the essential physics
and keep the mathematics minimum, we first drop the
friction in Eq. (1), and we will show later that it can be
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small. Without friction the Hamiltonian corresponding to
Eq. (I) is

H= (P —
q A) +U(r), (2)

2m
with the "vector" potential A determined by

hVXA= —p, z, (3)

and the scalar potential U determined by
h—VU= —

q p, v, Xz+F~. (4)

As usual, there is an arbitrary constant in the scalar
potential which will not infIuence any physical quantity.
The arbitrariness in the vector potential also has no
observable consequence. With the Hamiltonian for a
vortex, Eq. (2), its quantum dynamics is governed by the
familiar Schrodinger equation

ihl+) = Hl+), (5)

with W the vortex wave function. It has been shown [2,3]
that for a vortex moving along a closed loop such as the
one in Fig. 1, a geometric phase 4 in addition to the usual
dynamical phase will be accumulated according to

gv 1A.dr = —q 2m ds —p,
h 2

= —2mq Np„, , (6)

where N„„, is the total number of Cooper pairs enclosed
by the loop. Since the super quid density p, varies
continuously, so does the enclosed Cooper pairs number

N~„, Equation (. 6) is similar to the case of a charged
particle in the presence of a magnetic field, with the
number of magnetic Aux quanta replaced by the number
of Cooper pairs, and is an alternative and equivalent
expression for the vortex velocity part of the Magnus

FIG. 1. A schematic diagram for the proposed vortex interfer-
ence experiment. J, = ep, v, is the applied supercurrent. v
is the vortex velocity. B is the applied magnetic field, point-
ing towards the reader. A vortex moves from the point a to the
point b, through either the guided route 1 or the guided route 2.
A voltage drop along the supercurrent measures the interference
effect of the guided motion.

force in Eq. (I). The above equation is the base for our
proposed vortex interference experiment.

Consider a vortex moving across the superconducting
film from the point a at one edge to the point b at
the other edge in Fig. 1. It can pass through either the
guided route 1 or the guided route 2. If 9'~ and W2 are
the transition amplitudes from a to b via routes 1 and 2,
respectively, the total transition probability is

I+I' = I+i + +el'
= 1+iI' + I+21' + 21+iI I+2lcos(@), (7)

with 4 given by Eq. (6). Here the unimportant dynamical
phase factors of %"i and W2 are omitted, because during
the variation of the geometric phase 4 they can be kept
unchanged. It is evident from Eq. (7) that the geometric
phase 4 controls the vortex interference. To observe the
interference as manifested through Eqs. (6) and (7), we
first discuss the generating of vortices, the motion from a
to b, and the measurement of the interference. Then we
discuss the tuning of the geometric phase 4.

The generating of vortices can be done by applying
a small magnetic field perpendicular to the film. The
small magnetic field generates a dilute gas of vortices. To
avoid a possible complication the applied field should be
small enough so that the vortex interaction is negligible
in the proposed interference experiment. By applying a
supercurrent a vortex will move across the film under the
infiuence of the superAuid velocity part of the Magnus,
the so-called Lorentz force. The guided motion can be
created by making the thick line part of the film in Fig. 1

much thinner than the rest, a small fraction of the average
thickness. Then a vortex will prefer to move along the
guide. Modern nanofabrication can make the film very
homogeneous. Therefore the pinning in the film and
along the guide can be controlled. The largest effect
that inhibits the vortex motion may come from the edge
pinning, which can be reduced, too, by making tampered
edges around points a and b. Hence a vortex may move
rather freely from a to b along the guided routes 1 and 2,
not in another part of the film. If the average number
of vortices moving from a to b per unit time is n,
according to the Josephson relation the voltage drop along
the supercurrent due to this vortex motion is

h
v = —n. (e/', (8)

2e
with 'P given by Eq. (7). Here e is the charge of an
electron. Therefore the periodic dependence of ~'Il

~
on 4

is manifested by the same dependence in the voltage drop
V, which gives the direct measurement of the interference
effect in our proposed interference experiment.

The tuning of the Cooper pair number in the enclosed
loop in Fig. 1, therefore the change of the phase 4 in
Eq. (8) according to Eq. (6), can be achieved in several
ways. One method is to put a voltage gate beneath the
loop in Fig. 1. If the temperature is low enough, we can
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ignore the normal electron fraction in the voltage gate
control and take the superf1uid electron equal to the total
electron density. Then if the charging energy is not big
enough to break a Cooper pair, the change of the total
electron number inside the loop caused by the gate voltage
is equal to twice the total Cooper number change. In this
case the variation 6Np, of the number of Cooper pairs
enclosed by the loop is directly controlled by the gate
voltage V~.

(9)
2e

where C~ is the capacitance between the loop and the
voltage gate. Another method to change the Np is
to change the temperature, such as using laser heating,
because the superAuid electron density is a function of
temperature. In this case there is no net charge change
inside the loop. The low temperature dependence of
the superfluid density for a conventional superconductor
is exponentially weak because of the energy gap, while
for a high T, superconductor it seems to be a power
law. Because essentially one Cooper pair change inside
the loop will be observed, this difference requires a
different combination of the temperature control and
the geometric size of a sample for those two types of
superconductors: better temperature control and/or smaller
loop are desired for high T, superconductors. This
completes our discussion of the experimental setup.

We now discuss the vortex damping and the associ-
ated random fluctuation, the important quality which is
decisive in our proposed vortex interference experiment.
We will demonstrate that it can be negligibly small with
a proper choice of materials and parameters. The vor-
tex damping may be divided into two separated parts: the
contribution from the vortex cores studied by Bardeen and
Stephen [13]and one from outside the core such as due to
vortex-density fiuctuation interaction [10]. We first dis-
cuss the core contribution because it is usually the domi-
nant one. Although for a large vortex core the damping
may be strong, for a small vortex core, which is typical for
high T, superconductors, the core damping contribution
can be very small at low temperatures due to the discrete
nature of core states. Because the size of a vortex is an
order of the superconducting coherence length g, the core
level spacing is therefore an order of R2/j2m, with m, the
electron mass. If the temperature is smaller than the core
level spacing, the Bardeen-Stephen approach [13] should
be extended and a low damping limit will be expected.
The core damping in this situation comes from interlevel
transitions, an example of the Landau-Zener transitions
[14]. Although a complete and consistent study of the
small core damping is lacking, a straightforward calcu-
lation has indeed shown an exponentially small damping
for low vortex velocities [15]. For high T, superconduc-
tors this crossover temperature to low damping is found to
be -20 K, an+has been confirmed experimentally [16].
The same argumerit applying to dirty (and some clean)

conventional superconductors leads to a crossover tem-
perature as high as an order of 0.1 K. In an interesting
paper the ballistic motion of vortices with a mean free
path much larger than 1 p, m in a dirty conventional su-
perconductor was reported even at a temperature of a few
K [17]. We should also point out that the guided motion
can be realized by a thin layer insulator separating the
loop area and the rest of the superconducting film as in a
superconductor-insulator-superconductor Josephson junc-
tion. In this case there is no vortex core damping con-
tribution. The conclusion of this discussion is that the
core damping is small for some materials at low enough
temperatures, and has been observed experimentally. The
damping contribution from outside the core is generally
believed to be small, and cannot be simply represented
by a linear vortex velocity damping [10]. In a supercon-
ductor, the coupling of the density fluctuation to the elec-
tromagnetic field generates a plasma gap. Those density
fluctuations can always follow a slow vortex motion. The
corresponding damping is then small in this case, as one
may infer from a general discussion in Ref. [10]. For a
2D superconductor there is no gap in the plasma mode,
and the resulting vortex damping contribution might be
large. However, one may coat the film with a layer of
gold to make a finite gap in the plasma mode, then again
eliminate the damping contribution outside the core. In
view of the above discussion of the vortex damping, in
the proposed vortex interference experiment the size of
the loop, such as in Fig. 1, should be smaller than the
phase breaking length for a vortex, which can be an or-
der of 1 p, m with the materials and parameters discussed
above. This length scale is nevertheless much larger than
the vortex core size, the "microscopic" length scale. In
this sense our proposed vortex interference experiment is
a mesoscopic one.

We should emphasize that the ballistic motion of vor-
tices is crucial in the above proposed vortex interference
experiment. This requires that both the pinning along
the guided routes and the vortex damping strength should
be sufficiently small, which are, fortunately, the common
properties of both some conventional superconductors and
all high T, superconductors. It is interesting to point out
that a weak pinning, a nuisance in certain applications as
indicated by the recent enormous effort in trying to in-
crease the pinning in high T, superconductors, will find
its warm welcome in the possible applications associated
with the vortex interference.

There is an interesting quantum electrodynamic inter-
ference effect associated with the magnetic flux carried by
a vortex, the so-called Aharonov-Casher effect [18]. The
geometric phase associated with this effect has a differ-
ent sign compared to the one due to the Magnus force
as given by Eq. (6). In principle this sign difference is
experimentally observable. For example, if the charge
imbalance felt by the moving magnetic Aux is equal to
the number change of Cooper pairs, the Aharonov-Casher
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phase will cancel the phase due to the Magnus force, and
there will be no net phase change. However, here we wish
to demonstrate that the Aharonov-Casher effect itself may
be difficult to observe for a vortex moving in a supercon-
ductor. We note that the observation of this effect neces-
sarily requires a charge imbalance in the superconductor
and a well defined magnetic Aux during a vortex motion.
In order to have a well dehned magnetic Aux, the size of
the loop such as in Fig. 1 must be larger than the size of
the magnetic flux, which is the effective magnetic screen-
ing length and is usually much larger than the London
penetration depth. For highly granular superconductors,
such as Josephson junction arrays, the effective magnetic
screening length can be as large as the size of the whole
sample itself. To make the magnetic Aux feel the charge
imbalance in the superconductor, the voltage gate should
be placed far away from the loop such that the magnetic
Aux should not see the Aharonov-Casher effect due to the
voltage gate, because the whole superconductor-voltage
gate system is charge neutral. The reason is that the
electromagnetic field is in 3D, in contrast to the 2D hy-
drodynamical nature of the Magnus force. This distance
is again presumably an order of the effective magnetic
screening length. Note that the discussion of the vortex
damping has shown that a very large loop is unsuitable for
the interference experiment, because the damping and de-
phasing effect increases with the size of the loop. In view
of the large effective magnetic screening length in dirty
superconductors and high T, superconductors, the condi-
tions for the observation of the Aharonov-Casher effect
are very restrictive there.

We note that in the proposed vortex interference
experiment the loop area is large and well connected to
the rest of the film. The usual quantum size effects such
as the Coulomb blockade [19] and the even-odd number
parity [20] are therefore not present. However, those
effects do not suppress the vortex interference. It is likely
that indications for the vortex interference effect due
to the Magnus force have been observed experimentally
[21], but have been confused with other processes such
as the Aharonov-Casher effect. In the present proposed
experiment there will be no such confusion.

In conclusion, we have proposed a vortex interference
experiment in a superconductor to directly test the vortex
velocity part of the Magnus force. We have shown that
this experiment is a feasible one. This vortex interference
experiment, if established, demonstrates the quantum
coherence effect at a macroscopic level, and is important
from a fundamental physics point of view. For a loop
of size order of 1000 A. , and the film thickness order
of 100 A, the total number of Cooper pairs enclosed by
the loop is of the order of 10 . The vortex interference
effect will allow us to measure the effect of a single

Cooper pair. Thus a relative accuracy of an order of 10 ~

may be readily achieved. This indicates that the vortex
interference effect also has a good technical application
potential.
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