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Resonant Tunneling Through Two Discrete Energy States
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We observed new type of Lorentzian-shaped resonances in the current through two coupled quantum
dots with tunable barriers. We show that the resonances occur when the energy of two discrete states
match. Their widths can be as small as 5 p, eV and are only determined by the lifetime of the discrete
energy states, independent of the reservoir temperature. The achieved energy resolution makes it
possible to observe a small asymmetric deviation from the Lorentzian line shape, which we attribute to
inelastic tunnel processes.

PACS numbers: 71.50.+t, 73.20.Dx, 73.40.Gk

Artificially fabricated nanostructures, which contain
only a few electrons, have proven to be excellent labo-
ratories to study quantum size effects [1—7]. The
electron wave nature gives rise to the formation of
zero-dimensional (OD) states when electrons are confined
in all three spatial directions in a quantum dot. Resonant
tunneling through a OD state has been studied in detail
by measuring the current through a quantum dot, weakly
coupled to two electron reservoirs. Although this allows
for a good characterization of the spectrum of the OD
states, information about the intrinsic lifetime of the OD
states or the tunnel mechanisms is partially masked by the
temperature of the reservoirs [5].

This limitation can be removed when two dots are
placed in series and the resonant tunneling current through
two OD states is measured. In this case, transport is
expected to be possible only when the energy of the two
OD states matches. The current is therefore determined by
the energy overlap of the two OD states [8]. Experiments
on double quantum dots in vertical structures showed
resonances, but the width could not be related to the
intrinsic lifetime of OD states [9]. In this work, we use
a tunable double quantum dot with well-developed OD
states in each dot, and we exploit the Coulomb blockade
of tunneling to control the number of electrons in the
dots [10].

Using this technique, we observe sharp resonances when
the energy of two OD states in two different dots matches.
The shape of the peaks is Lorentzian, and the width is
determined only by the lifetime of the OD states. Fur-
thermore, we are able to distinguish between elastic and
inelastic tunnel processes between the two dots and esti-
mate a lower boundary for relaxation rates within a dot.

The double quantum dots used for this work are defined
by metal gates on top of a GaAs/A1GaAs heterostructure
with a two-dimensional electron gas (2DEG) 100 nm

below the surface. The ungated 2DEG has a mobility
of 2.3 X 106 cm /Vs and an electron density of 1.9 X
10' m at 4.2 K. A scanning electron micrograph
(SEM) of the gate geometry is shown in Fig. 1(a).
Applying a negative voltage to all gates depletes the
electron gas underneath them and forms two quantum dots
in the 2DEG. Current can fIow from the large electron
reservoir on the left via the three tunnel barriers induced
by the gate pairs 1-F, 2-F, and 3-F to the reservoir
on the right. The transmission of each tunnel barrier
can be controlled individually by the voltage on gates
1, 2, or 3. A single quantum dot can be defined in
the 2DEG by applying only a voltage to gates 1, 2, I,
and F (dot I) or to gates 2, 3, II, and F (dot II). In
this way, we can characterize the individual dots and
compare their properties to those of the double dot.
The experiments are performed at zero magnetic field
in a dilution refrigerator with a base temperature below
2 mK.

The current-volage (I V) curve of a s-ingle quantum dot
provides two clear signatures for the presence of both
Coulomb blockade effects and OD states. The insets of
Fig. 2 show the I V's of dots I (up-per inset) and II (lower
inset). At low bias voltages U, the current through the dot
is suppressed by the Coulomb blockade [10). Increasing
the bias voltage lifts the blockade. The current shows
a stepwise increase: Each time when an additional OD
state falls in the energy window eV set by the bias
voltage V, an extra transport channel is opened and the
current increases with a step [3—5]. From the spacing
of the current steps we obtain the average spacing 6 of
the OD states: 6~ = 125 p, eV for dot I (upper inset) and
Bt~ = 225 p, eV for dot II (lower inset). The difference
in these two energies rejects the different lithographic
sizes of the two dots [see Fig. 1(a)]. Accounting for the
depletion areas, we estimate that dot I has a diameter
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FIG. l. (a) SEM micrograph of the double dot with litho-
graphic dimensions of 320 X 320 nm (left dot) and 280 X
280 nm' (right dot). (b) Schematic potential landscape of the
double quantum dot, where p, l,f, and p,„gh, denote the electro-
chemical potentials of the left and right reservoirs and V the
bias voltage across the double dot. The OD states in dot I are
denoted by levels I to 5 and in dot II by levels n and P.

of 240 nm and contains about N~ = 90 electrons, while
dot II has a diameter of 200 nm and contains roughly
N» = 60 electrons. Using the Fermi energy FF at
bulk density, we estimate 6~ = 2EF/N& = 150 p, eV and

6~~ = 2EF/Nt~ = 230 p, eV. This is in good agreement
with the estimates obtained from the I-V curves. From
standard measurements we obtain the charging energies
E for adding an electron to the dot [11]: E~ = 1.1 meV
(dot I) and E» = 1.8 meV (dot II).

Transferring one electron through the double dot re-
quires three consecutive tunnel events. The electron has
to overcome the charging energy for adding an electron to
dot I and dot II. Furthermore, electrostatic interactions
between the dots can change the transport conditions.
These effects have been studied in detail in metal [11]
and semiconductor systems [12,13] in the regime where
charging effects dominate transport. We find similar ef-
fects, but in this paper we focus on the role of the OD

states on tunneling through the double dot and consider
the charging energies as constant offsets in the transport
conditions.

FIG. 2. I-V curve of the double dot, showing sharp reso-
nances in the current when two OD states line up. Upper inset:
I-V curve of dot I. Lower inset: I-V curve of dot II. Both in-
sets show a suppression of the current at low voltages due to
the Coulomb blockade and a stepwise increase of the current
due to the discrete energy spectrum of the dot.
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FIG. 3. Current through the double dot vs the gate voltage Vgl
using a bias voltage V = 280 p, V. Inset: The current through
the double dot as a function of Vg3 with V = 1 mV showing
that the number of resonances increases with bias voltage.

Figure 2 shows the I-V curve of the double dot with
all three tunnel barriers set in the tunneling regime.
The Coulomb blockade suppresses the current through
the double dot at low bias voltages, but at larger bias
voltages the current shows sharp resonances. The spacing
of the resonances is about 250 p, eV. This is of the same
order as the spacing of the OD states in the single dots,
which demonstrates that the resonances originate from the
discrete energy spectrum in the two dots.

The same resonances are seen when we sweep the gate
voltage. Figure 3 shows the current through the double
dot versus the voltage Vg~ on gate 1 using a constant bias
voltage of 280 p,V. The current shows three groups of
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sharp resonances separated by regions of zero current with
a period AVg]: 9 mV in gate voltage V~&. With only
dot I formed, we observe periodic Coulomb oscillations
as a function of V~~ with the same period AVg[, each
period corresponds to a change of one electron in dot I.
This indicates for the double dot experiment of Fig. 3
that tuning the gate voltage by AVg~ alters the number
of electrons N& by one, while keeping the number of
electrons N[~ constant.

We now argue that the sharp resonances in the current
occur when two OD states in the two dots are on resonance.
Resonant tunneling through the double dot is illustrated
in the schematic potential landscape of the double dot in
Fig. 1(b). This figure shows a few of the OD states in
dot I (levels 1 to 5) and dot II (levels n and P). The
electrostatic potentials p ~ and p ~ ~ are tuned in such a
way that transport through the double dot is possible via
the charge states (Ni, Ni~) (N~ + 1, Ni~) ~ (Ni, Ni~ +
I) (N~, N~i). The finite bias voltage V gives an electron
from the left reservoir three choices to tunnels into dot I:
It can tunnel to one of the unoccupied levels 5, 4, or 3.
This increases the electrostatic potential p& by the charging
energy Ei (the levels have been drawn at the positions
applicable after an electron has occupied one of the levels
5, 4, or 3). When the incoming electron relaxes to the
ground state (level 3), it can tunnel via the levels 3 and
n to the right reservoir. When elastic tunnel processes
are the dominant transport mechanism, the current through
the double dot is resonantly enhanced only when the two
OD states in dot I and dot II match in energy. Tuning
the alignment of the OD states with the bias voltage V or
the gate voltage V~~ gives rise to the sharp resonances in
Figs. 2 and 3.

The resonances in a particular group in Fig. 3 can be
identified with the energy diagram of Fig. 1(b). The
first resonance occurs when level 3 resonates with level
n (peak 3-n). This corresponds to the rightmost peak
in Fig. 3. Increasing p& by making Vg& more negative
brings transport off resonance until level 2 lines up with
n (peak 2-a in Fig. 3) followed by the third peak 3-P.
Continuing to sweep VgI increases the energy of level
3 above the electrochemical potential p, ],f, of the left
reservoir. This blocks transport and removes an electron
from dot I permanently. The next group of resonances is
observed when the gate voltage Vgl has been changed by
one Coulomb oscillation period AVgl (see Fig. 3). Note
that the number of resonances decreases in the next two
groups. Sweeping Vg~ also shifts the OD states in dot II
due to a small capacitance between gate I and dot II [see
Fig. 1(a)]. Transport is possible until OD state n is shifted
above p, ~,f, and one electron is removed from dot II
permanently (V~| ( —470 mV).

The spacing of the OD states can be obtained by
converting the gate voltage scale into energy [10]. This
yields an energy separation of resonances 2-n and 3-n by
70 p, eV, which is the energy separation of levels 2 and 3.

In the same way we find for levels n and P a separation
of 200 p, eV. Both values are in good agreement with the
typical values we found above.

On increasing the bias voltage we observe that the
number of resonances in a particular group increases.
This is illustrated by the inset of Fig. 3 which shows
one group of resonances with a bias voltage V = 1 mV.
Approximately 12 resonances are visible in this group
as the gate voltage Vg3 is swept. These observations
are in agreement with the resonant tunneling picture of
Fig. 1(b): When the bias voltage is larger, more OD
states can cross each other.

Two features of our data justify the above used assump-
tion about relaxation within a dot and allow us to make
an estimate for the relaxation rate. First, we do not ob-
serve resonances formed by the excited state of the left dot
and empty state in the right dot (for instance peak 4-n).
This implies that the relaxation rate of an electron from
level 4 to the level 3 is faster than the tunnel rate through
the double dot. Second, at relatively small bias voltage
~eV

~
( Bi, dot I can be only in the ground state and ex-

hibit a single "ground" resonance. At higher bias voltages,
it is possible to populate excited states of dot I. When the
relaxation rate is much slower than the resonant tunnel-
ing rate in the ground state, the system would get stuck
in the excited state and the ground resonance would be
suppressed. However, we find that the amplitude of this
resonance stays constant with increasing bias voltage.
From these two observations we deduce that the relaxation
rate is faster than the tunnel rate through the double dot.
From the maximum current I „=10 pA we estimate that
relaxation occurs much faster than e/I „=2 ns.

We now show that the double dot geometry allows
for an accurate measurement of the intrinsic linewidth of
the OD states, which is not averaged by the Fermi-Dirac
distribution of the electrons in the reservoirs. Theoretical
considerations [8] show that the line shape of a resonance
is Lorentzian when only elastic tunneling is important.
For our geometry, the current reads [8]

where e is the energy difference between two discrete
states in the two dots and I ~ is the linewidth due to
tunneling from the left lead to dot I. t is the tunnel
coupling between the two dots and I q is the linewidth due
to tunneling from dot II to the right lead. Note that the
width of the resonance is determined only by the lifetime
of the OD states.

We have studied the line shape in detail in a second
sample of identical design. Figure 4 shows a single
resonance (black dots). The right-hand side of the peak fits
very well with the Lorentzian line shape of Eq. (1) (solid
line), while the left-hand side shows a small deviation
from the Lorentzian fit. The only free fit parameter is the
width at half maximum w = 5 p, eV. From the maximum
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FIG. 4. Enlarged resonance measured in a second device of
identical design using a bias voltage of 400 p, V. The data
points (black dots) can be fit with a Lorentzian line shape (solid
line). For comparison we have plotted a thermally broadened
resonance with a fit temperature T = 35 mK (dashed line).

current and the width of the resonance, we find t =
0.2 p, eV and I 3 = 10 p, eV. For comparison we have
fit the resonance with a thermally broadened resonance
I(e) —cosh(e/2kT) z (dashed line) [14]. The top is fit

very well when we use a temperature T = 34 mK, but there
are large deviations in both tails of the resonance.

We have shown that transport through a double dot is
resonantly enhanced when the energies of two OD states
match. The width of the resonances is much smaller than
the voltage across the double dot. This, together with the
Lorentzian line shape of the resonances, demonstrates that
transport through the double dot is determined only by
the lifetimes of the OD states in the dots. However, we
observe a small deviation from the Lorentzian line shape
at one side of the resonances. This is a very general
feature in our data. It is clearly visible at the high bias-
voltage side of the resonances in the I-V curve in Fig. 2
and at the left-hand side of the resonances in Figs. 3 and
4. The asymmetry appears at the side where an electron
tunnels from a OD state with a higher energy to a OD state
with lower energy. Upon reversing the sign of the bias
voltage we find that the asymmetry appears at the other
side of the resonance. This provides strong evidence that
the asymmetry is due to inelastic tunnel processes. In

such a process, an electron can tunnel inelastically upon
emitting either a photon or phonon to the environment
of the dot. Although we are able to extract the rate of
this inelastic process from the data, at present there is no
quantitative theory available for our system to allow for a
detailed comparison.

In conclusion, we have observed resonant tunneling
through two discrete energy states. We showed that
resonant tunneling can be used as a new technique to
investigate the physics of coupled discrete energy states.
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