
VOLUME 74, NUMBER 23 PH YS ICAL REVIEW LETTERS 5 JUNE 1995

Exciton-Exciton Correlation in the Nonlinear Optical Regime
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We present a theory of the time development of the nonlinear optical excitations in a semiconductor
in which the correlated part of the many-body problem is expressed in terms of the exact N-exciton
eigenstates and is decoupled from the optical excitation process. A erst-principles exact numerical
solution for the four-wave mixing in a one-dimensional model demonstrates the role of two-exciton
correlation in polarization mixing and, in particular, shows a ringing of the polarization with the
frequency given by the binding energy of the biexciton.

PACS numbers: 71.35.+z, 42.50.Md

Recent four-wave mixing (FWM) experiments in semi-
conductors have shown the importance of the biexciton
effects in the nonlinear response. The inclusion of biexci-
tonic effects as well as the effects of polarization mixing
in the description of optical excitations in semiconduc-
tors was discussed in terms of an effective phenomeno-
logical few-level model [1—3] to explain the temporal
dependence of the FWM signal as well as beating phe-
nomena between bound and unbound biexciton states
observed for cross-polarized excitations near the funda-
mental exciton resonance. By the equation of motion ap-
proach, Axt and Stahl [4] show that the semiconductor
Bloch equations form a closed set for the density matrix
elements to any given order of the external field. A dia-
grammatic approach by Maialle and Sham [5] shows the
structures of the excitons and biexcitons involved in the
third-order susceptibility and the relation of the particle
loops to the polarization mixing. The truncation scheme
provides a starting point for a study of polarization ef-
fects from a microscopic point of view. This Letter ad-
dresses the problem of separation of the static problem
of the exciton and biexciton eigenstates and of the dy-
namical optical processes. By expressing the nonlinear
response in terms of exact eigenstates of the system in-
volving a given number of electron-hole (eh) pairs, it fol-
lows that the third-order polarization depends only on the
one eh-pair subspace (excitons) and the two eh-pair sub-
space (biexcitons). The correlated part of the biexciton
which appears in the third-order polarization is further
expressed succinctly in terms of an exciton-exciton cor-
relation function. Our formulation offers the alternatives
of (1) solving the exciton and biexciton eigenstates to a
desired numerical accuracy and then using them to ob-
tain the correlation functions, and (2) using the standard
many-body techniques to solve approximately for the dy-
namical two-exciton correlation functions. We present a
first-principles exact numerical solution for the correla-
tion function in a one-dimensional semiconductor model.
The solution offers a physical picture of the two-exciton
correlation which does not always correspond to the exist-
ing phenomenological models but which we believe rep-
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The operator B, = ~k Ck„~czk c~ k creates an ex-
citon state with zero total momentum and wave function

with energy ~& „.These states are the solution
of the Wannier equation [7] for the semiconductor. The
dynamical evolution of the polarization in an applied ex-
ternal field is governed by the expectation values of the
following relevant Hubbard operators:
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which can be used to express the exciton operator
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The interaction of the semiconductor with a classical
external laser field with central frequency co„and E(t) =

resents more closely the underlying physical processes in
the experimental observations.

In the absence of the light-matter interaction the eigen-
states IEN ) of the Hamiltonian of the usual semiconduc-
tor model can be labeled according to the number N of
eh pairs [6]. For N = 0 there are no additional quan-
tum numbers u and we denote this semiconductor ground
state by IO) and choose its energy to be zero. The N = 1

subspace is the exciton subspace with the additional quan-
tum numbers n = (n, cr) where o. denotes the polariza-
tion. We consider only the heavy valence subbands with
angular momentum ~3/2 and a conduction band with spin
~1/2. The selection rules dictate that for light along the
growth axis the +3/2 (—3/2) electrons in the heavy-hole
band are coupled via an optical transition with —(+) po-
larized photons to the +1/2 (—1/2) spin states in the con-
duction band. The next relevant subspace is the biexciton
Hilbert space with a complete set IE2 ) of bound and un-
bound states. The interband matrix element between the
Bloch states of the bands is denoted by p, . It is conve-
nient to express the total cr polarization in terms of exci-
ton operators [7]
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E (t)e ' "e + c.c. is given in the usual rotating
wave approximation [7,8] by

A„*
H/ = —g ' B„+H.c. l,

2 ' )

external field
m0

(X ) = g X~ (t) + O(EN+2m o+2)

m=o

The general expectation values follow from the relation

(XN, o;M, P)t = (Xp No)t. (Xp M, P)t/ (Xpp)r ~ (5)

with Xp (t) = 1 from the initial condition of the semicon-
ductor in its ground state. In order to calculate the o. po-
larization we consider the equation of motion for (B„),.
Using the Hubbard operators it reads

0„ (w)"'+ gp
N~l n, p

t I ) (Bn,o )t + g g cn, a;o,p(XN, o;N+1,p)t (6)
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with the time-dependent Rabi frequency of a given
polarization (h —= 1) and a renormalized Rabi frequency
given by 0 = 2(p, E ) and 0„=n„A . From the
form of the interaction H~ it follows that the expectation
values (XpN )~ can be expressed as a power series in the

with
(w)
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We have introduced the dephasing due to degrees of free-
dom not included (e.g. , phonons) in a phenomenologi-
cal way with the effective parameter I . Using Eqs. (4)

and (5) we see that Eq. (6) can be considered as a linear
differential equation with a (trivial) first-order source and
nontrivial source terms of third and higher order. In the
following we restrict ourselves to the contributions up to
third order. Then using Eqs. (4) and (5) we see that only

X, „and X2 have to be determined. As X1„(t)obeys(~) (2) (~)

Eq. (6) without the terms involving the summations one
obtains

X1 „(t)=— e ' '- '")' ")n
n, o X

The equation of motion for X2 p reads(2)

(2) . (2)
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where the biexciton phenomenological dephasing constant I, is taken in the following as 2I . In order to write the
second term on the right-hand side of Eq. (6) in a compact form we use the explicit result (9) for X2 p(t) in order to
perform the summation of the biexciton quantum numbers P. Then we obtain after a partial integration

1 t i (&) (&)c„„pX2p(t) = —.- — (OID„- -.. B„B„«IO)X, „«(t)X,„(t)
p n', o', n",o."

(10)

Here we have introduced the operators D„- —.„
[B„,[B„,H] ] an-d —the memory kernel

tween excitons as in the usual mean-field semiconductor
Bloch equations (MFA) [9—12]. It is only nonzero for
excitons with identical polarization and does not produce
polarization mixing. As D„- —., (r) IO) = 0 the correlation
function F(r) can be written as a time-ordered product
and standard Feynman diagrams can, be used, e.g. , to set
up approximation schemes. From a diagrammatic analy-
sis to all orders the rigorous polarization selection rule
o- + o. = o-' + o." can easily be read off. As the opera-
tors A„(q) can be expressed in terms of finite center of
mass exciton operators B„(q),F(r) can be considered a
two-exciton correlation function. The fact that the third-
order polarizability can be expressed in terms of this cor-
relation function depending on a single time difference is
due to the simplicity of the semiconductor ground state

F„"a„"a (r) = (0I'-Dn'ana(r)D„~ ' aOI0).

The explicit form of the D operators is

= g u, II„-.-(q)/I„. (—q), (12)Dn, o",n, o
qWO

(13)

where Uq denotes the Fourier transform of the Coulomb
interaction between the electrons. The first term on the
right-hand side of Eq. (10) describes the correlations be-

t
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approximated by the vacuum state of the bound and un-
bound excitons [4,7].

In the limit of /ar e dg dephasing a short-time approxima-
tton B„(q,r) = B, (q) e ' ' "' q)' in the calculation of

can be considered, which neglects the residual interac-

on y involves simple equal-time ground-state expectation
va ues, already leads to polarization mixing. It does not
require the existence of a real bound biexciton

For N = 1 the last term on the right-hand side of
Eq. (6) provides the other third-order source term, which

q. ~ ~, is bilinear in X ' and is usually called the
state-filling term [9—12]. Its strength is determined b

Ii)
n o",n', o',n",o." ~o o'~IT, o" + +, ', '+ n o- oq q, n, o q, n', o' n«o «o.

'7

0.6

fh

~ 04lO

a0
~~

CO

co 0.2

I
CLI

0.0
-5 10 20 25

We have applied our theory above to a one-dimensional
Hubbard model of n sites, extended to two bands for
a semiconductor and to include a lon-ong-range interaction
between electrons from both ba d d ffn s on i erent sites in-

c corre ation func-versely proportional to the distance. Th l
tion was calculated by numerically solving for the time
evolution of the wave function Dt~0) i h& in t e site represen-

much lar crt
tation [13,14]. The number of sites n = 60—160 uss n = — used was
muc arger than the ground-state spatial extent of the biex-

2n3 was man
citon molecule. The dimension of th e matrices involved,
2n, was manageable because of the sparseness of the

amiltonian matrix. Figure 1 shows th t de ime ependence
of F+' (r)jF+' (0) on the fundamental time scale for the
ground-state excitons. The ultrafast t

'
ds in nnsic ecay is due

to the superposition of the continuum of unbound biexci-
ton states, whereas for longer times onl the bound-

u ion remains. The binding energy of the bound
biexciton molecule is =0.1', where cu denotes the bind-
ing energy of the fundamental exciton resonance. The
corresponding normalized spectral distribution of the cor-
relation function is plotted in Fig. 2 with a dephasing of

eak is =0
= 0.1~ . The relative weight of the bound bioun iexciton

pea is =0.04. The spectrum has a maximum at cu = 4'

FIG. 2. Spectral distribution of the correlation f t f
g. . The sharp resonance is due to the bound biexciton

molecule in the system.

The corn lete
which etermines the fast time scale for th te in rinsic ecay.

e complete information about the correlation function
obtained for this model serves as th fs e input or a three-
pulse degenerate four-wave-mixin (DFWM

e have used short Gaussian pulses with central
a cy a e fundamental exciton resonance. With

the direction and the polarizatio f th dn o e inci ent pulses
given by (k&, —), (k2, +), and (k3, —), the signal in the

f 3 2
—k ~, +) direction is then due to the cor-

relations of exccitons with different polarization; i.e. , this
ignal vanishes in the MFA and space-filling effects are

also absent at this order of the signal. Figure 3 shows the
time-resolved intensity, which is given b the s
non inear polarization of Eq. (6) of the signal with all three
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FIG. l. ReaReal (solid line) and imaginary (dashed line parts
of the normalized correlation function F(r)/F(0) for the one-
dimensional semiconductor model.
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FIG. 3. TTime-resolved DFWM signal (I = 0.01cu
cross- olarized
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FIG. 4. Time-integrated DFWM signal in the cross-polarized
configuration. The ringing with the biexciton binding fre-
quency occurs only for negative delay, i.e., pulse 1 arriving
after pulses 2 and 3.

line). The signal shows a sharp rise and the observed tem-
poral oscillation superposed on the decay of the signal has
the frequency of the binding energy of the bound biexciton.
This phenomenon can be explained by a ringing of the po-
larization due to the biexciton resonance, which is below
the energy of the two-exciton continuum. These oscilla-
tions occur also in the time-integrated signal of Fig. 4 for
negative delay; i.e., pulse 1 arrives last and the diffracted
signal contains the information from delayed stages of the
coherence decay only. In addition, the ringing does not
need additional biexciton or unbound two-exciton states,
which is demonstrated using the bound biexciton (short
dashed line) and the continuum contributions (long dashed
line) only in Fig. 3. The interference of bound and un-
bound states reduces the actual signal intensity due to de-
structive interference. This cannot be correctly described
in a few-level model. From the derivation of Eq. (6) we
conclude that these oscillations cannot be denoted as polar-
ization interference because the source term responsible for
this DFWM signal is due to correlations between the exci-
ton states (N = 1) and biexciton states (N = 2). We ex-
pect a similar behavior of the signal for higher-dimensional
semiconductor systems with a bound biexciton resonance,
because of a partial cancellation of dimensionality effects
in the expression of Eq. (12).

In conclusion, we have investigated the role of exciton-
exciton correlations in the weak nonlinear regime of
optical excitations in semiconductor systems, including
spin-dependent effects. We have demonstrated how the
correlated part of the many-body problem can be separated
from the dynamics of the nonlinear polarization, which
is different from recent approaches [4,5]. In addition
to the well known mean-field corrections, a two-exciton
correlation function has to be calculated to obtain the exact
third-order nonlinear polarization. In contrast to phe-

nonemological approaches, which stress the importance
of real bound biexciton states in the common few-level
models [1,3], we showed that second-order contributions
in the exciton-exciton interaction can already lead to
significant polarization mixing in the exciton polarization
dynamics which is absent in a conventional mean-field
approach.

In an application of the formalism, we have calculated
the exact numerical DFWM signal in the cross circularly
polarized configuration for a one-dimensional semicon-
ductor. For resonant excitation of the fundamental ex-
citon resonance the signal shows oscillations with the
biexciton binding energy which are due to a ringing of
the semiconductor polarization for short-pulse excitations.
For ultrashort-pulse excitations, the nonlinear polariza-
tion is dominated by the continuum of unbound biexciton
states, which shows a fast intrinsic dephasing in the cor-
relation function.
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