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Painleve Iand Manning's Counterion Condensation
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Using results of McCoy, Tracy, and Wu [J. Math. Phys. (N.Y.) 18, 1058 (1977)] the Manning
counterion condensation for rodlike polyelectrolyte solutions in the presence of salt is rigorously proven.
It is demonstrated that the Manning condensation belongs to a special case of the Kosterlitz-Thouless-
like phase transition in the presence of boundaries.

PACS numbers: 61.25.Hq, 02.90.+p, 75.10.Hk

Recently there has been a renewed interest in various
kinds of boundary-related phenomena which involve sta-
tistical systems near criticality [1,2]. This is motivated by
the necessity to extend the results of conformal theories
in the bulk, especially those which involve the exactly
integrable models, to the situations where the boundary
interactions are present. Although previously some sig-
nificant results related to the conformal field theories with
boundaries were obtained [3], recent developments [1,2]
allow one to obtain much more complete information for
the same systems.

The two-dimensional Ising model is considered to be
exactly integrable. Near criticality its thermodynamics
is being fully described by the free two-dimensional
Dirac fermions [4]. The quantum correlation functions
for this model are described, nevertheless, as solutions
of the classical integrable nonlinear differential equations,
a feature typical for quantum integrable models [5].
Specifically, the spin-spin correlator for the Ising model
can be obtained in terms of solutions of the classical sinh-
Gordon equation [4,5]

d y 1 ddy+ ——= sinhy. (I)dr r

The same equation happens to occur in the theory of
Manning polyelectrolyte counterion condensation in the
presence of excess salt as discussed in Ref. [6]. The
polyelectrolyte is a charged macromolecule (e.g. , DNA)
which in Manning's theory is assumed to have the
conformation of a rigid rod. The aqueous solutions of
such charged rods could be prepared with or without
the added salt. In the last case instead of Eq. (1) one
should consider the Liouville-like equation [i.e., one has
to replace sinhy on the right hand side (rhs) of Eq. (1) by
expy]. Since this case has been widely discussed in the
literature, e.g. , see Ref. [7], we shall discuss only the case
of added 1:1 univalent salt. The more general case of a
salt mixture can be also considered, in principle, as we
shall discuss below.

Equation (1) is the Poisson-Boltzmann (PB) equation
written in terms of the reduced dimensionless variables.
In physical units we have r = ~R, where R is the radial
distance while ~ = 8m'&no is the usual Debye-Hiickel
parameter with no being an equilibrium salt concentration,

and the Bjerrum length Ztt is defined as 47rltt = e /ek&T,
with k&T being the temperature factor. The quantity e
is the dielectric constant of the solution (assumed to be
unaffected by the presence of charged polymers [8,9]),
and e is the electric charge. The PB equation, Eq. (1),
is written for the single polyelectrolyte chain (the infinite
dilution limit [8]) and the presence of a chain in solution
is refIected in the boundary condition

r =——2s,dy
df' r =~

(2)

where g = Ztt/8, 8 is the characteristic spacing between
the charges along the chain [3], and a is the characteristic
radius of a rigid rod polyelectrolyte.

The essence of Manning's theory of condensation lies
in the following two statements. It is expected that for
r ~ ~ the solution of the PB equation [Eq. (1)] acquires
the following asymptotic form:

y(r) =—2g'Ko(r), (3)

(4)

where Ko(r) is the modified Bessel function of zeroth
order and the parameter s

' (the effective charge) is
expected to depend on g in such a way that, for $ ~ 1,
g' is some function of g, while for $ ) 1, $' remains
constant independent of g. For $ ~ 1 it is anticipated
that a portion of the counterions floating in solution will
be absorbed at the surface of the polyelectrolyte chain
(counterion condensation) so that the effective charge g'
remains constant independent of g.

These statements were tested analytically for the
Liouville-like PB equation in [7] and numerically in [6].
No rigorous analytic results explicitly supporting the
above statements have been reported in the literature.

In this Letter, using the results of McCoy, Tracy, and
Wu [10] for the Ising model correlators, we demonstrate
explicitly the correctness of both statements made above.
Biological applications of these results could be found,
for example, in Ref. [11]. In order to use the results of
Ref. [10], it is necessary to bring Eq. (1) to the standard
Painleve III form. This is accomplished by introducing
new variables w and x, so that w = exp( —y/2) and x =
r/2. In terms of these variables, Eq. (1) acquires the form

d ~ 1 d~l 1d~ 3 1+
I

+- W
dx2 w dx ) x dx W
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2m -2w(x/2, A) —= 1 —I e for x ~ ()(). (8)

Equations (6) and (7) relating A to the constants B and o.
of the small x asymptotic solution, Eq. (5), were obtained
in Ref. [10] and independently in [12]. Using the fact
that for x ~ ~, Kp(x) = Qm/2xe and the above result,
Eq. (8), can be rewritten as

w(x/2, A) —= 1 —2@2AKp(2x) . (9)
Equation (9) can be reexpressed in terms of the original
variable y as follows:

y(r) =- 2&2AKp(r) . (10)
If o. in Eq. (7) is known, then we obtain from this
equation

1 . '7T 0
A = —sin

7T 2

so that comparison between Eqs. (3) and (10) produces
2~23 = g'.

In order to determine 0-, we have to use the boundary
condition, Eq. (2), along with the asymptotic result given
in Eq. (5). For o. ( 1 and a 0 we obtain o. —= g.
Therefore, in this regime

2~2 .sin, for g ( 1.
77 2

(12)

For o. ~ 1 and nonzero a, Eq. (5) becomes singular. The
nature of this singularity can be best understood in terms
of the Kosterlitz-Thouless- (KT-) like argument [13]. For
this purpose, in the spirit of the original Manning theory
[8], it is sufficient to calculate the total charge Q(r) per
unit length for all ions that lie between the distance of the
closest approach a and some distance r,

2m rp(r) dr, (13)

Comparison between this equation and Eq. (1.3) of Mc-
Coy, Tracy, and Wu [10] indicates that Eq. (4) is a spe-
cial case of Eq. (1.3), where one needs to require v = 0
to reach an agreement with our Eq. (4). For x ~ 0 and
v = 0, Ref. [10]provides the following asymptotic result
for ~:

-2w(x/2, A)
—= Bx 1 ——B (1 —o.) x + O(x ),16

(5)
where, according to Theorem 3 of Ref. [10],we have

a=2--~('
) r('; '~, (6)

with I (x) being the usual gamma function. The parameter
o. entering Eq. (5) is connected with the parameter A via

2o.(A) = —arcsin(vrA), (7)

for 0 ~ A ( I/m. The parameter A enters into the large
x asymptotic solution for ~ as an integrating constant,

are forced to restrict our analysis to the values of r which
are close to a. In this case Eq. (5) can be used so that
approximately

y(r) = 2$lnr + const. (14)

The explicit form of const is unimportant for our calcu-
lation. Using Eq. (14) in Eq. (13) and retaining only the
most potentially divergent part of the total expression for
Q(r) produces

a —2($—1) —2($ —1)r
Q(r)()(:,r ) a.2g —1

(15)

In order to analyze Eq. (15), we have to convert it
into original system of units in which r = ~R. By
writing R = r"/o. , where (x is a parameter which we
choose to be equal to a, we obtain R ~ ~ for K

0. This limit coincides with that considered in the KT
paper [13]. Alternatively, one can put a ~ 0 and keep
r constant. This would be in accord with Manning's
original treatment [8]. In the vicinity of the rod there
is no screening and, for finite rod radius, we can neglect
the first term on the rhs of Eq. (15) for sc ~ 0. Then, for
g ~ 1,we obtain Q(r) ~ ()().

Consider therefore more closely the equation g = 1 or
This result produces the critical temperature T,

given by

e
kpT, =—

2 2m el (16)

1 X
w(xi2, 2) =—— x sin 2p)n —+ 2$(p)),

4p, 8
(17)

where p, is defined through o- = 1 + 2i p„provided that

A = cosh(pm),

and the phase @(p) is defined according to

I'('p) = ll( p)I '~'"'

(18)

In the original KT paper the factors like 2' (characteristic
for two-dimensional Coulomb problems), etc. are omitted;
the dielectric constant a is taken to be 1 and the
dimensionality of charge, e, is two dimensional rather
than three dimensional as in our calculations. Ef we
denote q2 = e2/27reZ, then Eq. (16) produces exactly the
KT result for T, at the mean field level. Hence Manning's
condensation is just another application of KT general
results.

Let us now discuss the case A ) I/vr, which effectively
corresponds to s ) 1 as shown below. For this case
McCoy, Tracy, and Wu [10] have obtained for x 0 and
v = 0 the following asymptotic result:

where, according to the electrolyte theory [14], p(r) =
sinhy(r). Since y(r) is not known exactly for all r, we

Using Ref. [15] it can be shown that

@(p) = Cl p C3p C5p (20)
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with c],c3, etc. being known numerical coefficients.
Since at large distances the result given by Eq. (10) still
holds, then, in view of Eqs. (3) and (18), we obtain

2~2
(21)coshp, m .

In order for the charge g' to remain constant for g ) 1 we
must require that p, is independent of g. At the same
time, the solution given by Eq. (17) should still obey
the boundary condition given by Eq. (2). Substitution
of Eq. (17) into Eq. (2) produces the following self-
consistency result for p. ..

a
p. = (t —1) tan(2~)n —+ 24'(p) l.

8
(22)

In view of Eq. (20), the result p, ~ 0+ is an acceptable
solution for Eq. (22). Substitution of this solution into
Eq. (21) produces for the effective charge g' the result
g' = 2~2/m, independent of g. This provides a rigorous
proof of Manning's conjecture discussed above.

The above proof is based, however, on our initial
assumption that our polyelectrolyte chain is dissolved
in 1:1 ionic salt solution. If we would have a salt
mixture, e.g. , of 1:1 and 2:2 salts, the resulting equation,
which replaces Eq. (1), would be the double sinh-Gordon.
This equation cannot be reduced to the Painleve type
and, therefore, its solution would require a perturbative
treatment [16]. At the same time, for salt solutions made
of asymmetric electrolytes of the form M™N", Eq. (1)
should be replaced by [6]

1 dY 1

dx f' dx 2
+ ——= —[exp(my) —exp( —ny)] . (23)

The above equation can be reduced to one of the
"complete" third Painleve equations [6]. The theory of
such equations was recently developed in Ref. [17] and,
hence, can be used for polyelectrolytes.

Finally, the above treatment is valid only for a single
rodlike polyelectrolyte chain. Finite concentrations of
such chains would require us to consider equations like
Eq. (1) in the multiply connected (punctured) planar
domains. As is was discussed in Ref. [18], the Laplace
operator acting on such multiply connected planes can
be treated equivalently on Riemannian surfaces (without
punctures) of the appropriate genus determined by the
polyelectrolyte concentration. Physical applications of
these ideas can be found in Ref. [19]. In addition, for the
case of no added salt, the sinh-Gordon equation is reduced
to the Liouville equation. For punctured planar domains

such an equation was considered in connection with the
nonperturbative treatment of quantum gravity in Ref. [20].
It remains to apply the same ideas to polyelectrolytes.
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