
VOLUME 74, NUMBER 23 PH YS ICAL REVIEW LETTERS 5 JUNE 1995

Universal Shape of Scaling Functions in Turbulence
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Using a novel device that enables the real-time measurement of high-order structure functions in
turbulence with superior statistical accuracy, we study the shape of the structure function at scales where
it is influenced by viscosity. The experiments on a variety of laboratory turbulent flows demonstrate that
this shape is universal. We argue that it reflects a fundamental property of multifractals: multiscaling.
We present accurate experimental scaling functions g(p) and, finally, comment on the nature of the
skewness of the distribution function of velocity increments by comparing transverse and longitudinal
distribution functions.

PACS numbers: 47.27.Gs, 02.50,—r, 05.45.+b

The existence of universal scaling behavior of the
small-scale motion of turbulent flows is an exciting facet
of the physics of turbulence. For large Reynolds numbers,
a range of length scales r E [l, I] exists where there is
a continuous Aux of energy from large to small scales
and moments of velocity fluctuations have a power law
dependence on r with possibly universal exponents. In
most experiments, the lower bound I of the inertial range
[l, L] turns out to be an order of magnitude larger than the
smallest possible length scale g, where the local Reynolds
number is of order 1 and viscous forces prevail.

An important instrument for quantifying scal-
ing of turbulent velocity fluctuations is the struc-
ture function G„(r) of velocity differences Au(r),
Gp(r) = (Au(r)t')„with Au(r) = u(x + r) —u(x).
The scaling of structure functions determines an ex-
ponent g(p) that is assumed to be universal at large
Reynolds numbers. On the basis of dimensional
arguments Kolmogorov [1] predicted g(p) = p/3,
but experimental results deviate from this prediction and
show evidence for a nonlinear dependence of g on p [2].

The deviation from Kolmogorov s prediction is an ex-
pression of the intermittency of turbulent velocity Auc-
tuations. The well-known multifractal model by Parisi
and Frisch [3] is an attempt to capture intermittency in a
geometrical framework. The idea is that velocity differ-
ences locally scale as Au(r) = rh, where the probability
P(h) of encountering an exponent h is P(h) = r' ol").
A Legendre transformation connects the dimension D(h)
of the set of exponents h with the function g(p). In the
multifractal framework, the "explanation" of a nonlinear
scaling function s'(p) is a nontrivial dimension function
D(h), i.e., a dimension function that does not collapse to
a single point.

Multifractals are expected to exhibit multiscaling [4—
6]. Multiscaling is the consequence of a singularity-
dependent small-scale cutoff of the scaling region. In
turbulent flows, the strongest singularities (smallest h) can
survive to smaller scales before they are smoothed by
viscosity. As structure functions of increasing order p
probe the singularities of increasing strength, the scaling
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FIG. 1. Third-order structure function measured in jet turbu-
lence with Re& ——8,3 X 10 [11]. G, is normalized by the Kol-
mogorov velocity vk (= 0.17 m/s).

behavior of G„(r) should extend to smaller r as p
increases. The exact manner in which singularities are
smoothed and the exact way in which the scaling more
and more extends to viscous scales as p increases are
still unresolved questions, but a crude model follows
from equating the eddy turnover time r/Au(r) to the
viscous momentum diffusion time r /v, where v is
the kinematic viscosity [4]. Using this simple model,
multiscaling is predicted to have a slight dependence on
the Reynolds number. Therefore, in laboratory turbulent
Ilows (that have modest values of the Reynolds number)
the effect is expected to be small, and very careful
experiments are needed. The search for experimental
evidence of multiscaling, however, provides a highly
desirable independent test of the multifractal model.

The scaling of the third-order longitudinal structure
function Gs(r) = r follows from the Navier-Stokes equa-
tion in the limit of zero viscosity [1]. Figure 1 shows
G3(r) that was measured in a turbulent liow caused by the
efllux of a jet in still air (details about the flow can be
found in Table I). The result shows a clear inertial range
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where Gq(r) = r&l~), with g(3) = 1.03, which is slightly
but significantly larger than 1. As Fig. 1 illustrates, the
scaling behavior of structure functions G~ (r) extends
down to length scales r = 30'. For smaller distances,
that are increasingly influenced by viscosity, G~ bends
steeply down. At large length scales (here r = 10~q), the
finite size of the laboratory experiment is felt.

The central point of this Letter is that the shape of
the structure function for r ~ 30' exhibits a universal
dependence on the order p. That is, a dependence
that does not depend on the details of the experiment.
We argue that this universal behavior is consistent with
multiscaling.

The statistical accuracy of high-order structure func-
tions is notoriously problematic. The problem is most se-
vere at the smallest length scales (where our prime interest
is). For increasing order p, G„(r) is an average over the
increasingly rare instances of increasingly large velocity
differences. We have built a special digital device that
can measure high-order structure functions in real time
through accumulated probability distribution functions of
hu(r). Not only has this significantly eased the statistics
problem, but the absence of stored time series and the im-
mediate availability of the structure function has allowed
systematic experimentation with the liow conditions [7].
The maximum number of velocity samples that we have
taken is 1.5 && 10, 2 orders of magnitude larger than what
has been customary so far.

Brielly, the velocity signal from a hot wire [8] is
passed through a four-pole antialiasing filter set at 10
kHz, or at 22.5 kHz, and digitized with a sampling
time r, = 5 X 10 5 s (2.2 X 10 5 s). The 12 bits of
data are fed into a long (1024 positions) shift register
and velocity differences u(t) —u(t + r) are computed
at discrete values of 7.; that are spaced exponentially on
[r„1024',]. In our experiments the size (u )'~ of the
turbulent fluctuations is a small fraction of the mean
velocity U, and we assume that a stationary probe cuts a
line through a field of frozen turbulent fluctuations that is
swept across it. Effectively, therefore, the probe measures
space-dependent Iluctuations u(x) = u(Ut) [9].

Following a recent suggestion by Benzi et al. [10] we
write the structure function as G~(r) = [f„(r)r]~t"). The

function f„(r) gauges the deviation from ideal scaling be-
havior G~(r) = r~l") A.s argued above, the multiscaling
hypothesis predicts that this deviation in the intermediate
viscous range will be smaller for larger moments p. For
the moment we assume intermediate viscous scales to be

g ~ r ~ 30'. In order to highlight the p dependence
of f„(r) we define the function g„(r) —= f„(r)/f2(r)
Roughly, the behavior of the function g„(r) for p ) 2 will
be as follows: (i) At very small scales, r = rl, the veloc-
ity field is smooth and G„(r) = r". Therefore, g~(r) =
rpt"), with a positive exponent P(p) = p/g(p) —2/j(2).
(ii) In the intermediate viscous range the multiscaling hy-
pothesis predicts g~(r) ) 1. (iii) For inertial range scales,
30' ~ r ~ L, the (properly normalized) function g~(r) is
unity because all scaling behavior has been captured in
the exponent g(p). Summarizing, for r decreasing from
r = I, the function gp is first constant then increases and
reaches a maximum at intermediate viscous scales, and
decreases again when r becomes O(tI). According to the
multiscaling hypothesis, the height of the maximum will
be larger as the order p increases.

Figure 2 shows the function g„(r) on a log-log scale
for various experiments. The Taylor microscale Reynolds
numbers in these experiments ranged from Reg = 3 X
102 to 8 X 10 . Especially the small Re& experiments
have a small inertial range where g„(r) is fiat. The
spread of the measured g„(r) at large scales is not
due to statistical error but rejects different macroscopic
experimental conditions; those have been summarized in
Table I and [11).

For the different fiow conditions and the (small) range
of Reynolds numbers that we have studied, Fig. 2 demon-
strates the universality of the residual functions g„(r) for
r ~ 30'. The p dependence of gp is precisely as pre-
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TABLE I. Characteristic parameters of the turbulent flows.
The Taylor microscale Reynolds number Re& is defined with
respect to a correlation length A of turbulent fluctuations. L is
the integral length scale of the flow that is determined from the
large-r behavior of the correlation function. The flow condi-
tions are summarized in [11].

Experiment U (m/s) u (m/s) Re& q (m) L (m)
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12.6 0.68
11.0 0.94
12.2 1.05
12.5 2.27
10.4 0.80

3.4 x 10'
5.3 x 10'
6.p x 1p2

8.1 x 10'
4.5 x 10'

2.0 x
1.9 x
1.8 x
9.5 x
2.0 x

10 0.095
10 4 0.170
10 4 0.130
10 ~ 0.075
10-4 0.170

FIG. 2. Residual function g„(r) for p = 4 (dashed lines) and

p = 8 (full lines) in a variety of turbulent Ilows. The numbers
point to liow conditions in Table I and [11]. Experiment 1 was
repeated at a large enough sampling rate to resolve r = 2g.
The predicted small-r scaling behavior g~(r) —rp'"' is shown
by the dotted lines.
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dieted by the multiscaling hypothesis. For the curves in

Fig. 2 with the filter set at 10 kHz the temporal resolution
is not fine enough to observe the predicted maximum of
g„(r). One of the experiments was also done at a large
enough sampling rate to resolve r = 2g. The correspond-
ing curves clearly show the maximum and agree with the
predicted small-r scaling, g „(r) —r P I")

Structure functions such as shown in Fig. 1 have a clear
scaling region that allows an unambiguous determination
of a scaling exponent. Especially for laboratory flows
at small Re& this is not always the case and measuring
scaling exponents g(p) requires a normalization procedure
[12]. In Fig. 3 we plot the scaling function g(p)/p for
those of our experiments (2,4) that had a large enough Req
and displayed obvious scaling behavior. Therefore, there
is no ambiguity as to the scaling interval and the value of
the scaling exponent but we have vertically shifted curves
such that g(3) = 1. The actual values of g(3) varied from
0.96 to 1.03. These small but significant deviations from
unity are important systematic errors whose origin we
are currently trying to understand. By no means have
moments of order 20 converged. We estimate that the
largest converged moment is approximately 14. Still, at
larger values of p we have detected clear scaling behavior.

The results of Fig. 3 clearly and firmly demonstrate the
anomalous character of the scaling of turbulent velocity
fiuctuations. The function g(p)/p significantly deviates
from Kolmogorov's prediction g(p)/p = 1/3, and g(p)
depends nonlinearly on p. Assuming that the strongest
singularities h;„ that can be detected in 1D cuts live in
planes, the multifractal model predicts that for large p
g(p)/p h,„+ 1/p. We have indicated this limiting
behavior with h;„= 0.16 in Fig. 3 [13]. Very recently
She and Leveque [14] proposed an inertial range scaling

0.4

law based on the hypothesis that the most singular quid
structures are filaments and on the assumption of a hierar-
chy of less singular structures. Their prediction for g(p)/p
is also shown in Fig. 3; it fits our data remarkably well.

We believe that the results shown in Fig. 3 are repre-
sentative of the scaling of turbulent fluctuations at much
higher Re&. We are not completely certain because the
requirements of isotropy and homogeneity are hard to sat-
isfy in laboratory experiments, especially for the large
scales. In fact, we have designed our experiments such
as to maximize the scaling dynamical range and to satisfy
the requirement s(3) = 1 as well as possible (it turned
out that this was the same as maximizing Ref. We es-
timate that the error bars in Fig. 3 are A(g(p)/p) = 0.01
at p = 10 and 0.04 at p = 20. Apart from experiments
mentioned here, we have studied turbulence behind a
cylinder and in a boundary layer. In less favorable experi-
ments the determination of g(p) is much more ambiguous
and even-order g(2p) and odd-order exponents g(2p + 1)
do not fall on a smooth curve.

Scaling arguments do not distinguish between odd and
even moments (b.u"). The existence of a nonvanishing
third-order moment and its scaling behavior follows
exactly from the Navier-Stokes equation [1]. There
is no such result for the scaling behavior of even-
order moments, and only scaling arguments remain. The
existence of odd-order moments is due to the skewness
of the probability function (PDF) of velocity differences
P(hu). This asymmetry between positive and negative
velocity differences is nicely illustrated in Fig. 4 that
shows F„(p) = ~(Au" (r))~'/" as a function of p for two
values of r that correspond to the bounds of the inertial
range. For p ) 8, the F, (p) at even values of p can, to
good approximation, be interpolated between F„(p —1)
and F„(p + I) at neighboring odd values, and vice versa.
Therefore, the principal contribution to the high-order
moments comes from the negative velocity increments.
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FIG. 3. Full lines: scaling functions g(p)/p in two different
turbulent flows. The numbers point to flow conditions in
Table I and [I I]. Dash-dotted line: Kolmogorov's prediction
g(p)/p = I/3; dotted line: g(p)/p = I/p + h;„, with h;„=
0.16; dashed line: prediction of She et al. [14].
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FIG. 4. Structure function of jet turbulence (expt. 4 in Ta-
ble I) F„(p) = ~(hu(r)~)~' ~ as a function of the order p. The
normalization is F„(2) = l.
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FIG. 5. Probability distribution functions of velocity incre-
ments Au(r) at r/rt = 90 in grid turbulence. Full lines trans-
verse P, (it, )uand P, ( /Ju), do—ts: longitudinal P&(/s. u) The.
normalization is f P&, (x)dx = 1 and f x2PI, (x)dx = 1.

Scaling arguments also do not discriminate between
longitudinal AuI and transverse Au, velocity increments.
Transverse velocity differences (where u and r are per-
pendicular) have a symmetrical PDF and only even mo-
ments exist.

Figure 5 compares Pt(/t. ut) and P, (hu, ) that were
measured in grid turbulence and demonstrates that PI and
P, coincide for Au ~ O. This coincidence holds in the
inertial range (but not outside), and we can expect that
also the scaling of high-order moments of transverse and
longitudinal velocity fluctuations will be very similar.

Measuring transverse PDF's with two velocity probes
is a challenge and requires homogeneity of the flow and
careful calibration of the probes. We demonstrate the
quality of our result by overlaying P, (hu) with P, (—Au).

In conclusion, using a new instrument for the acqui-
sition of high-order structure functions in turbulence, we
have for the first time provided evidence for multiscaling
of structure functions. Our results also demonstrate that
scaling behavior of turbulent velocity fluctuations Au is a
very robust phenomenon; it does not depend on sign or
orientation of Au.

This work is also part of the "Stichting voor Funda-
menteel Onderzoek der Materie (FOM)," which is finan-
cially supported by the "Nederlandse Organisatie voor
Wetenschappelijk Onderzoek (NWO). "
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