VOLUME 74, NUMBER 23

PHYSICAL REVIEW LETTERS

5 JUNE 1995

Resonant Patterns through Coupling with a Zero Mode
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The interaction between a diffusive instability and a quasineutral zero mode favors the onset of
resonant structures in systems exhibiting inversion symmetry and stabilizes reentrant hexagonal patterns

when this symmetry is absent.
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In driven systems, structures of hexagonal symmetry are
ubiquituous. They have been observed in fields as di-
verse as hydrodynamics (Bénard-Marangoni [1] and non-
Boussinesq Rayleigh-Bénard [2] convection), chemistry
(Turing patterns) [3], and nonlinear optics (tranverse pat-
terns) [4]. All these systems are described by a set of non-
linear partial differential equations for the state vector U

aU
YR N(U,r;V), D

where N is a vector function of U and its spatial derivatives
that describes the various kinetic processes taking place in
the system. It also depends on some control parameter r.
Generically, in 2D, resonant hexagonal patterns stabilized
by triplet interactions appear as the result of a symmetry
breaking instability in systems lacking inversion symme-
try, i.e., for which the equality

N(U,r;V) = =N(-U,r;V) 2)
is violated. In 3D, this property is also responsible for
the onset of resonant patterns such as body centered cubic
structures (bcc) or hexagonally packed cylinders (hpc) [S].
Some of these 3D structures have recently been obtained
in open spatial chemical reactors [6]. In this Letter we
study the influence of a quasineutral zero mode generated
by a secondary steady-state bifurcation (that may mimic a
phase transition) on such symmetry breaking instabilities.
We show that it induces resonant structures when inversion
symmetry is present. In the converse case it leads to
reentrant resonant patterns.

We first consider a system described by Eq. (1) and for
which the condition Eq. (2) is satisfied. We suppose, to
fix the ideas, that for homogeneous conditions, the ther-
modynamic branch Uy, such that N(Up, r) = 0, undergoes
a “pitchfork bifurcation” at r = r, giving rise to two new
homogeneous steady states (HSS): U, = —U_. We fur-
thermore impose that the trivial state U, can be desta-
bilized by inhomogeneous perturbations of wave number
q. leading to a diffusive-type instability [3] occurring at
r=rr <rp.

Standard bifurcation theory may be applied to describe
the patterned solutions that branch off the state U, at
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r = rr [7]. In large aspect ratio systems, the field U may
be approximated by any linear superposition of m critical
modes

m
U=0U; + er ZAi exp(iq; - r) + c.c., 3)
i=1
where (|q;| = g.) and er is the critical eigenvector of
the corresponding linearization of N. In 2D, and if
the instability is saturated at third order, the complex
amplitudes A; obey a set of Landau equations
dA; 5 = o o
o nA; — gilAlPA; — gsz1 lA;1*A; (G # i), 4
where u = (r — r7)/rr and g, > g; > 0. Owing to the
absence of quadratic terms [Eq. (2)] and because the cubic
interaction is competitive (i.e., the cross-mode coupling
g2 is larger than the self-coupling feedback g,), the only
stable structure corresponds to stripes with m = 1 [8].
They .appear supercritically at r = rr with an amplitude
Ay such that |A{| = R, = \/u/g:. However, when r —
rp, the growth rate w, of a homogeneous perturbation
of amplitude A, about the state U, tends to zero. As
a result the uniform mode A, progressively rejoins the
set of active modes. Its resonant interaction with the
critical modes must then be taken into account since it
can modify their stability. In particular, when r, — rr
is small this interaction may be described by coupled
amplitude equations [9]

3
a,Ao = wvo - A(S) - ,BI[Z |Ai|2:|A()
i=1

— B2(ATASAS + A1A2A3),

A1 = uA; — gilA A — gllAl* + 1451714,

— 83A1A] — g4AoA3AT, )
where B, B2, g3, and g4 are positive and q; + q, + q3 =
0. The equations for A, and A3 are obtained by cyclic per-
mutation of the subscripts. As discussed recently by one

of us [10], the interference between the pitchfork bifur-
cation, at r,, and the symmetry breaking instability, at
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r = rr, generates a quadratic coupling term proportional
to Ao in the amplitude equation for the patterned modes.
These equations admit four types of global solutions:
(i) the reference state and the homogeneous solutions
Ag = 0or Ag- = *,/wg, A; = 0; (i) pure striped modes
Al = Ry = Ju/g1, Ay =A; =A; =0; (i) mixed
modes of smectic symmetry Ag = Ry # 0, |A|| = Ry
and A, = A3 =0, (iv) mixed modes of hexagonal
symmetry Ag = Ry3 # 0 and A; = Ryzexp(i¢;). The
first two have already been considered above; the third
type, mixed modes, are unstable. In the last case the
sum of phases of the modes forming the resonant triad,
® = ¢, + ¢ + ¢3, obeys the equation

% = g4Ry3Ruy3 sind . (6)
Therefore ® relaxes to 0 () when Ruys = RY; <0
(Rys = Rjizz > 0). In the former case, the maxima of
a component of the field U form a triangular lattice (A).
In the latter, a honeycomb lattice (4, ) is obtained. The
other components of the field are in phase or in phase
opposition. The corresponding amplitudes are given by
the solutions of

Rz — 3B1R;3Rus = 28Ry = 0,

w — (g1 + 28Ry — 3Rz = gaRusRus =0, (1)

with the signs, respectively, corresponding to an %, or an
ho pattern.

For the sake of concreteness we have analyzed the
Swift-Hohenberg model [11] that has been widely used
[7] to give a qualitative description of stable structures
appearing in systems exhibiting inversion symmetry. Its
defining kinetic equation is
—Z—I; =ru — [V? + ¢*Pu — u’. 8)
For this model, Uy = u = 0, rr = 0, and r, = ¢g* [12].
The amplitudes of the predicted hexagonal mixed-mode
solutions are shown on the bifurcation diagram (Fig. 1).
They are stable for r > %q? and thereafter coexist with
stripes, and with the homogeneous states U+ = u+ =
*\/r — g assoonas r > %qﬁ. Hence there exists a large
multiplicity of states. This diagram is different from that
of the standard ‘“hexagons-stripe” competition that oc-
curs near the instability point of systems lacking inver-
sion symmetry [13]. These stable hexagonal mixed-mode
states can only be reached by finite amplitude perturba-
tions from the HSS or by quenches (A ) through the dif-
fusive instability. For the same operating conditions, one
may therefore obtain either a triangular (ng,B,RMg) or a
honeycomb (R 73, Ry3) lattice, or stripes (R;), depending
on the initial conditions. Stable fronts between Ay and
h, patterns can then be constructed, and an example is
shown in Fig. 2. Convection experiments where the non-
Boussinesq character is easily tunable have recently been
carried out with SF¢ near its critical point [14]. When
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FIG. 1. (a) Moduli of the amplitudes for the 3D Swift-

Hohenberg model with g, = 0.5. R; is the standard “stripes”
solution branch. Ry; and Ry are the spatially modulated
components of the hpc and bcc mixed modes. (b) Amplitudes
of the zero mode components of the hpc and bcc mixed modes
for the 3D Swift-Hohenberg model with g. = 0.5.

non-Boussinesq effects are negligible, a scenario where
hexagonal patterns appear further from threshold than the
rolls has been observed [15]. Coexistence of Ay and A,
may then also be present. At larger values of the control
parameter, when the first overtone (lq| = 2¢g.) becomes
quasineutral, its coupling with the zero mode Ay also in-
duces a secondary subharmonic bifurcation of the stripes
that have appeared at r = rr.

In 3D the same effect biases the onset of all patterns
characterized by modes forming equilateral triangles.
Here also the phases of the modes belonging to a
resonant triad adjust in such a way that the quadratic
coupling terms are destabilizing. The following types of
stable patterned solutions may then be obtained: (i) pure
structures consisting of a smecticlike ordering of lamellae
(m = 1) and appearing supercritically at r = rr; (ii) hpc,
and hpc,. (m = 3) hexagonally packed cylindrical mixed
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FIG. 2. Stable stationary front separating the two different
hexagonal phases obtained for the same condition as in Fig. 1,
r = 0.2.

modes which are the natural 3D extension of the A
and h, mixed modes described above, and which also
obey [Eq. (7)]; and (iii) mixed modes resulting from the
superposition of modes of bcc symmetry (m = 6) and a
uniform mode Ap = Rp6. The amplitudes R 46 and Ry
are given by the solutions of

woRus — Riye — 6B1RysRue + 8B2Rye = 0,
w = (g1 + 582)Rye — 83Rie * 284RmeRus = 0, (9)

where the signs, respectively, correspond to bcc, and
bceo type patterns. For the zero phase structures (bccg)
the maxima of one component of the field are located
at the corners and center of a cube. They are sited in
the interstices for the 7 phase pattern. The same remark
as above applies for the other component. For the same
given value of the parameters one may thus obtain the
following set (Fig. 1) of structures

bee 7 (R 6. Rus), hpe, (R4, Rys), lamellae (R)),
hpey(RY 3, Rus), beco(R Y6, Rare) -

This succession is similar to that reported in the phase
separation of block copolymers [16]. We may thus
conclude that the interaction between a diffusive-type
instability and a steady-state bifurcation favors the onset
of resonant structures, even in systems exhibiting inversion
symmetry.

We now consider the effect of the resonant zero mode
on the physical systems cited in the introduction and that
lack such inversion symmetry. As is well known the
amplitude equations, Eq. (4), then contain the intrinsic
quadratic coupling terms vA;A;S8(k; + k; + ki) that al-

ready induce a subcritical branch of hexagonal patterns
near r = rr. When v # 0 the distinction between pure
patterned states and hexagonal mixed modes is irrelevant
since the quadratic term also induces the onset of har-
monics already near the instability point r = ry. In this
case the interaction with the quasineutral zero mode near
r = rp leads to a renormalization of the quadratic cou-
pling coefficient very = v — g4Ap. It now depends on the
control parameter through Ag. This dependence may lead
to the onset of new bifurcation scenarios. For example,
when the system is prepared in the trivial state U = Uy
and v (>0) is sufficiently small, the following sequences
of patterns may be observed in 2D by increasing the bi-
furcation parameter. A subcritical A triangular structure
(RE) with Ag > O prevails near r = ry and then becomes
unstable to the formation of stripes (R;) in the range
of values of the parameter where wve;; = 0. Patterns of
hexagonal symmetry may reappear at still higher values of
v h() (Wl[h Ver < 0) and hﬂ-(R;;”) with A() >0 (Usff > 0)
They correspond to the remnants of the mixed-mode so-
lutions discussed above in the limit v = 0. For a larger
value of v, the kg structures remain stable in all the range
of values of the bifurcation parameter . Such scenarios
have been obtained for the generalized Swift-Hohenberg
model with a quadratic term vu? [17]. The correspond-
ing bifurcation diagram is displayed in Fig. 3. A com-
plete analysis of all the possible bifurcation diagrams will
be given elsewhere. This reappearance of A-type solu-
tions should not be confused with the reentrant hexagons
that have been observed in some chemical models where
the nonlinear terms depend on the bifurcation parameter
[18]. This latter effect strongly depends on the speci-
fication of the models, whereas the mechanism of reen-
trance induced by the coupling with a zero mode is more
generic. Interestingly a sequence of structures analogous
to those presented in Fig. 3 has recently been obtained
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FIG. 3. Moduli of the amplitude for the 2D generalized Swift-
Hohenberg model with ¢g. = 0.5 and v = 0.05. R, and R,,
respectively, correspond to striped or hexagonal structures.
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in the CIMA reaction [19]. Similar reentrant inverted
hexagonal patterns have also been reported in the case
of thermal convection in a liquid crystal sample near the
nematic-isotropic phase transition [20].

The coupling presented in this note will be operative in
all degenerated bifurcations involving a diffusive instabil-
ity and a zero mode, such as in the Turing—saddle-node
interaction or the formation of supersolids [21]. The lon-
gitudinal and transverse modes in anisotropic media or
systems submitted to ramps of the control parameter also
fall in this class of problem [22].
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FIG. 2. Stable stationary front separating the two different
hexagonal phases obtained for the same condition as in Fig. 1,
r=02.



