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Effects of Ambient Gases on Granular Materials under Vertical Vibration
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We consider layers of noncohesive granular materials of mean height /4 subject to vertical vibration

z = Acos(wt).

Above T = Aw?/g = 1, convection begins, creating a heap of height L. We find

that for particles of diameter d < 1 mm the pressure P of the surrounding gas plays a key role:
L = btanh(KP) + ¢, where b and K depend on h, the gas viscosity, d, I', and A. Convection is
significantly suppressed if the shaker sidewalls are permeable, showing that gas trapped in the granular
material is a major source of heaping. We consider criteria to determine when gas effects are relevant.

PACS numbers: 46.10.+z, 47.20.-k

Noncohesive granular materials have both solidlike and
fluidlike behavior and exhibit unusual phenomena [1]
such as size segregation [2], density waves [3], convective
transport [4], and anomalous sound propagation [5].
The dynamics of granular materials are important in
many industrial applications [6,7]. However, due to
the complexities of these materials, there is not yet an
acceptable general theory for granular flows. Hence,
quantitative experiments are a key tool for developing
further understanding.

Recently [8—15], as well as historically [4], there has
been great interest in the physics of vibrated noncohe-
sive granular materials. Assuming vertical sinusoidal os-
cillations, z = Asin(w?), the dimensionless acceleration
' = Aw?/g (g is the acceleration of gravity) is the pri-
mary control parameter. Above I' = I, the surface of
the granular material becomes unstable, and a rich vari-
ety of patterns occurs depending, in particular, on h/d,
where h is the mean depth of the granular mass and d is
the size of a particle. If h/d > 1 and " > T',_,, steady
convective motion evolves in the form of two counterro-
tating rolls leading, typically, to a single heap making an
angle 6, with the horizontal (a dynamic angle of repose).
Upward convective flow carries material to the apex of
the heap, and downward avalanches occur along the up-
per surface. If 2/d is moderate, a parametric instability to
standing waves at half the shaker frequency occurs [9,15]
forI' > I'.—,. Typically, I'c—y = 12and I'.—, = 4.

The focus of this work is the heaping instability. Three
physical mechanisms have been identified as possible
causes of heaping: friction between the walls and parti-
cles [12], an analog of acoustic streaming [8] if the shak-
ing is nonuniform, and gas pressure effects. At issue
here is the role played by the last of these. The forces
which are present include gravity, interparticle forces,
normal and frictional forces at the walls, and forces from
the surrounding gas. All but gas effects have been in-
cluded in molecular dynamics (MD) simulations which
yield an instability to convective flow, but little if any
heaping [13]. Clément, Duran, and Rajchenbach [12]
have shown that wall friction can generate convective
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flows. However, there are conflicting observations con-
cerning the role of gas in the heap formation [4,10,11].
Laroche, Douady, and Fauve [10] observed no heaping
when the surrounding gas was evacuated to a pressure
P = 107° Torr, whereas Evesque [11] noted heaping for
P down to 4 Torr. Gutman [6] has studied the levitation
of a layer of grains by gas, although not heaping.

We present here a systematic experimental study of the
role of surrounding gas on the heaping. We find, as did
Laroche and co-workers, that heaping either ceases or is
significantly reduced for P = 0. Moreover, we find that
the heap is regulated by a number of factors, including P,
h, d, and the gas viscosity .

We used a mechanical shaker driven by a dc motor
(inset, Fig. 2), as explained elsewhere [14]. We used
annular cells with narrow gaps; gravity and the direc-
tion of vibration are parallel to the cylinder axis. This
geometry eliminates one pair of lateral boundaries (and
their accompanying friction). The cell was made of two
concentric cylinders. For most of this work, both cylin-
ders were Plexiglas; the diameter of the inner cylinder
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FIG. 1. L vs P for different gases and sand grain diameters,
as noted. The solid lines are fits by L = b tanh(KP) + ¢. The
crosses correspond to a smaller ~ than the other data.
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FIG. 2. (L — ¢)/b vs KP for the data of the previous figure.
The solid line is tanh(KP). The symbols used here are the same
as in the previous figure. Inset: schematic of the apparatus, and
definitions of H, h, and L.

was ~10 cm, and the radial gap size was ~1.0 cm. To
probe the effect of surrounding gas, the annular gap of
an all Plexiglas cell was sealed and the pressure inside
controlled over 1072 < P < 10° Torr. The experiments
were made at I' = 1.30 where the convective heaping is
strong. Values of A were a few millimeters. To guar-
antee that the observations corresponded to steady state
conditions, it was necessary to wait from 30 min to an
hour or more. In one experiment, the outer cylinder
was made of a thin porous stainless steel sheet with a
regular grid of ~0.02 cm diam holes, and an open area
fraction of ~0.4. The inner Plexiglas cylinder had a di-
ameter of 7.6 cm and the gap was ~1.0 cm. The granu-
lar materials consisted of sand (smooth Ottawa sand with
d = 0.065 cm and two rough sands with d = 0.02 and
0.06 cm, respectively) and approximately monodisperse
glass spheres with 0.01 =< d = 0.2 cm.

We characterize the size of the heap by two related
measures: H, the vertical distance between the top of the
heap and the valley which forms in the opposite part of
the annulus, and L, the distance between the base of the
shaker and the top of the heap (inset, Fig. 2).

When P is decreased, the physical shape of the heap
does not change until P falls below ~10-20 Torr.
Then, at fixed I', H and L decrease monotonically with
P. Below P =1 Torr, the heap reaches an asymptotic
state which is nearly flat. There still may remain at
P = 0 weaker convection, with a radial sense of flow,
which leads to a relatively small amount of heaping. This
is presumably because of friction between the grains and
the wall [12], and is more pronounced for low A. We
will explore this issue elsewhere.

Figure 1 shows L vs P for air, helium, propane (u =
182, 196, and 80 wuP, respectively), and various types
of materials. The data were obtained at I' = 1.3 with

4644

A =0.534 cm and /27 = 7.78 Hz using all Plexiglas
side walls. The solid lines are nonlinear least-squares
fits by L = btanh(KP) + ¢, where b, ¢, and K are
fitting parameters which clearly depend on w, A, and d.
Saturation of L with increasing P, as indicated by the
data, must occur because of the increasing efficiency of
avalanches as the dynamic angle of repose 6, becomes
large. If the data of Fig. 1 are plotted as (L — ¢)/b « H
vs KP, they collapse onto a single curve, Fig. 2, within
experimental resolution; the P dependence is universal for
a considerable range of d. These data are representative
of all our results obtained with d < 1 mm. For the larger
d studied here, d = 0.13 cm, heaping was not observed.
The range 0.1 < d < 0.13 cm is an interesting crossover
regime which we will describe elsewhere.

The ambient gas plays a demonstrably important role in
generating a heap; the question is why. Two effects seem
potentially relevant: viscous drag and pressure gradients
which may result from gas trapped in the material.
For the following estimates, we use a standard set of
parameters: I' = 1.3, A = 0.3 cm (so that vy, = Aw =
20 cm/s), h = 10 cm, d = 0.02 cm, u = 200 uP, and
P =1 atm. We use p, = 3 g/cm?® for the density of the
grain material. We can estimate the effect of viscous drag
via the Stokes force, F; = 3wdv,u. (Strictly, the actual
Reynolds number for the flow past a grain is probably
somewhat higher [16] than that for which Stokes flow
applies, but the order of magnitude is probably right.) The
viscosity of a gas shows very little pressure dependence,
and F; is small compared to the weight W = gwp,d>/6
of a grain [16]; F;/W = 0.06 for the standard conditions.
Hence we conclude that viscous drag is not important for
these experiments.

An alternative explanation is that gas flows beneath the
grains during the part of the shaker cycle when the grains
lift off the base of the shaker, creating a gap of height &
between grains and base [6,10]; during this process, the
grains tend to dilate, making the inflow of gas easy. Later
in each cycle, the grains compact, and the gas between the
grains and base is compressed. This provides an upward
force on the grains. This effect has been studied by
Gutman [6] and Laroche, Douady, and Fauve [10]. The
former carried out extensive calculations and experiments
to characterize the effect of gas on &, assuming a granular
layer of uniform height. These calculations show that
the additional upward force can significantly affect §,
although no consideration was given to heaping. Laroche,
Douady, and Fauve [10] have shown experimentally that
the pressure rises as the heap collides with the base.

In order to test the role of gas trapping on the heaping
process, we used the shaker with the porous outer wall,
substantially reducing the possibility of trapping the
gas. For the various materials studied here, rough and
smooth sand and glass spheres, we found that at I' = 1.3
either no heap formed (all but one material) or a small
heap formed (smooth sand). When we sealed the holes
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from the outside with plastic film or tape, leaving the
surface in contact with the granular material unchanged,
nearly normal heaping was observed. We conclude that
gas trapped and compressed by the material plays an
important role in the heaping process

It is useful to have a measure of how strong the pressure
effect can be. The calculations by Gutman [6] provide a
starting point. But, they are specific to given grain sizes,
pressures, etc., and they assume a 1D motion which is not
truly appropriate when there is heaping. Nevertheless, it
is possible to proceed along the same lines as Gutman
to produce a first-order estimate of the strength of the
gas effects which can be easily applied to the present
experiments.

We frame the issue by assuming that gas has become
trapped between the layer of granular material and the
bottom of the shaker. The process by which this happens
is complex when there is heaping, but it clearly occurs.
As the gas is compressed during each cycle, it leaks out
through the material, of mean height %, which is a porous
medium. As the gas flows out towards the top of the
medium, there is an upward pressure gradient which tends
to lift the material and leads to heaping. To model this
process, we assume that (a) the system is 1D; (b) the
flow of gas follows Darcy’s law and is characterized by
a velocity v of the gas relative to the grains; (c) the gas
leaks out relatively fast, so that the flow properties through
the medium can be assumed static as the gas pressure
decays; (d) the characteristic initial velocity of gas relative
to grains is set by the characteristic velocity of the shaker,
vy, = Aw; (e) the gas is compressible; and (f) the slowest
relaxational mode of the gas leaking through the medium is
the most important and sets the scale for the upward force
of gas pressure on the grains. We find the slowest mode
of a boundary value problem in which the gas velocity is
v == v, initially. The details of the boundaries at the top
and bottom of the porous granular layer are taken as no
gas flux at the bottom, and fixed pressure at the top, but
these details are not important for the scaling argument
developed here. We estimate the average upward force
on a grain by the time average of the resulting pressure
gradient from this mode.

With these assumptions, the gas flow and pressure are
modeled by Darcy’s law [17]: (p/¢)dv/dt = B[—-VP —
(u/y)v], and the continuity equation: dp¢/dt = —V -
(pv). (The time derivative in Darcy’s law is not important
here because the flow is slow relative to acoustic scales;
hence B = 1 need not be known.) Variations in p and
P are related by the compressibility «: §p = pxSP. We
take [6] «k = P!, and assume a random densely packed
material with porosity ¢ = 0.4. The permeability of the
medium is well represented [17] by the Ergun relation:
y = d*¢>/150(1 = ).

Following standard analytical procedures [16], we lin-
earize these equations for small amplitude fluctuations
in P and v. For the conditions envisioned here, the

coupled equations can be reduced to a diffusion equa-
tion with diffusion coefficient D = y/¢xu. Hence all
modes decay. Solutions, (v, 8P) = (vg, Po)exp(—t/7 +
ikz), depending on the vertical coordinate z, must sat-
isfy 77! = Dk2. The pressure and velocity amplitudes are
related by Py = (k7/¢pk)vy = (u/yk)vo. Implementing
the boundary conditions, we find that the space-time-
varying part of the pressure consists of modes P =
P exp(—1t/7y) cos(kz), where the smallest k& (correspond-
ing to the slowest decay) is k = w/2h = h™'. The
decay time of the slowest mode is 7 = (2h/m)*/D =
h*/D. For cases relevant here, the relaxation times 7 are
relatively short compared to the shaker period.

The upward pressure force is found by integrating
VP over a grain, which is assumed to be a sphere.
Because the relaxation times 7 are relatively short
compared to the shaker period, a time average of the
gradients must be carried out. An estimate of the ratio
of the average upward pressure force on a grain and
its weight is given by (F,/W) = 12PI'/(kD)*p, =
4.3 X 10*hpu/d*)*(T'/Ppy). For the standard conditions,
(Fp,/W) = 0.46.

This analysis suggests several points. First, gas effects
depend strongly on grain size; specifically, the mean force
falls off as d7*. This is borne out by measurements of
H as a function of d, Fig. 3, for P =1 atm. H is a
strong function of d: H/d ~ d '%. For d = 0.10 cm,
h = 10 cm, there was a clear if weak variation of H
with P. No pressure effect was found for d = 0.13 cm,
h =10 cm. A second point is that heaping should be
suppressed if 4/d is small. The characteristic diffusion
times depend on 4?; for short layers, pressure variations
relax quickly compared to the shaker period. Data for H
vs h shown in Fig. 4 confirm this expectation. Note that
H saturates with increasing & and approaches a roughly
constant value H;.

d(mm)

FIG. 3. Scaled saturation height H/d vs d for glass spheres in
air at 1 atm. The data for H/d are described reasonably well
by a power law in d with an exponent of —1.63 (solid line).
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FIG. 4. Data for H/d vs h/d for d = 0.02 cm, rough sand.
Data for other materials are qualitatively similar. Inset: The
dimensionless measure Kv,uh/y, where we use k = 1/h for
the slowest mode wave number.

Obviously, the enhancement of heaping by gas pressure
cannot occur when P = 0, and the decrease of heaping
[10] at very low P occurs because there is no longer
enough gas to sustain the process. Before the limit of
zero pressure is reached, the linear approximations must
be replaced by a nonlinear analysis [6]. In the present
model, this should occur when P becomes comparable to
Py. We might expect that the breakdown of linearity and
the cessation of heaping would occur at roughly the same
pressure, although that need not be rigorously true. If
these two events occur at the same P, Py = vau/ky =
vapmh/y should be approximately proportional to the
fitting parameter K~! of Fig. 1. Alternatively, PoK
should be approximately a constant. The expectation that
this quantity is roughly constant is reasonably well met,
Fig. 4, inset, although there is at least one point which is
a notable exception. The correct prediction of K requires
a much more complex calculation than considered here or
by Gutman. Such a calculation must allow for the motion
of grains and gas and for heap formation.

A final issue is what happens as P increases. The
scaling analysis above suggests that the heaping should
diminish as P grows. Indeed, this is the case. Between
20 Torr and 1 atm, H decreases by ~10% for d =
0.05 cm, and by ~60% for the marginal case, d = 0.1 cm.

To conclude, these experiments have elucidated the role
gas plays in convection and heaping through quantitative
measurements of L versus important system parameters,
most particularly P. A simple model indicates the effect
of various parameters, but a detailed understanding of how
gas enhances convection is not yet available. One reason
the cited MD studies, which only include mechanical
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interparticle interactions, fail to show significant heaping
is that these models do not account for gas effects. It
is also important to note that convection and heaping
can still be driven by other mechanisms such as wall
friction or inhomogeneous forcing. The present work
only addresses the role of the ambient gas. This analysis
also suggests why a single heap forms: wherever h/d
is locally large, gas effects will be greater, and heaping
favored. The biggest heap will always win.

This work was supported by the National Science Foun-
dation under Grant No. DMR-9017236, by the National
Science Foundation and the Air Force Office of Research
under Grant No. DMS-9201034, and by the Exxon Re-
search and Engineering Corp.

[1] H.M. Jaeger and S.R. Nagel, Science 255, 1523 (1992);
R.P. Behringer, Nonlinear Science Today 3, 1 (1993).

[2] J.C. Williams, Powder Tech. 15, 245-251 (1976).

[3] G.W. Baxter, R.P. Behringer, T. Fagert, and G.A.
Johnson, Phys. Rev. Lett. 62, 2825 (1989).

[4] M. Faraday, Philos. Trans. R. Soc. London 121, 299
(1831).

[5] C-h. Liu and S.R. Nagel, Phys. Rev. Lett. 68, 2301 (1992).

[6] R.G. Gutman, Trans. Instn. Chem. Engrs. 54, 174 (1976);
54, 251 (1976).

[7] J.C. Howard, Fluidized Bed Technoiogy, Principles and
Applications (Hilger, New York, 1989).

[8] S.B. Savage, J. Fluid Mech. 194, 457 (1988).

[9] P. Evesque and J. Rajchenbach, Phys. Rev. Lett. 62, 44
(1989); J.B. Knight, H. M. Jaeger, and S.R. Nagel, Phys.
Rev. Lett. 70, 3728 (1993); S. Douady, S. Fauve, and
C. Laroche, Europhys. Lett. 8, 621 (1989).

[10] C. Laroche, S. Douady, and S. Fauve, J. Phys. (Paris) 50,
699 (1989).

[11] P. Evesque, J. Phys. (Paris) 51, 697 (1990).

[12] E. Clément, J. Duran, and J. Rajchenbach, Phys. Rev. Lett.
69, 1189 (1992).

[13] J. A.C. Gallas, H.J. Herrmann, and S. Sokolowski, Phys.
Rev. Lett. 69, 1371 (1992); H. Herrmann (private commu-
nication); Y.-h. Taguchi, Phys. Rev. Lett. 69, 1367 (1992);
H. Herrmann (private communication); Y.-h. Taguchi,
Phys. Rev. Lett. 69, 1367 (1992); P.A. Thompson,
Computer Simulations in Condensed Matter Physics VI,
edited by D.P. Landau, K. K. Mon, and H.B. Schuttler
(Springer-Verlag, Berlin, 1993).

[14] H.K. Pak and R.P. Behringer, Phys. Rev. Lett. 71, 1832
(1993).

[15] F. Melo, P. Umbanhower, and H. Swinney, Phys. Rev.
Lett. 72, 172 (1994).

[16] L.D. Landau and E. M. Lifshitz, Fluid Mechanics (Perga-
mon, Oxford, 1959), pp. 66, 170, and 245.

[17] D.A. Nield and A. Bejan, Convection in Porous Media
(Springer, New York, 1992).



