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Hidden Crossing Theory of Threshold Ionization of Atoms by Electron Impact
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The hidden crossing theory, familiar in the context of ion-atom collisions, is adapted to the
computation of ionization cross sections and spin asymmetries for electron impact on atomic hydrogen.
Computed ionization cross sections and spin asymmetry agree within 10% with measurements. A
rapid variation of the spin asymmetry near threshold is found, and its origin is traced to anharmonic
corrections to the Wannier threshold law for triplet spin states.

PACS numbers: 34.80.Dp

The collective motion of charged particles is fundamen-
tal to atomic physics [1,2]. One of the most dramatic,
and well-studied manifestations of collective motion is the
Wannier threshold law [3] for the fragmentation of a neu-
tral species into two electrons and a positively charged
ionic core. Despite the extensive development of quan-
tal theories of electron correlations in atoms, the correla-
tion effects described by Wannier are difficult to fit into
standard theories of ionization [4—8]. Present theory, for
example, has not been able to give a complete ab initio
description, over an extended energy range, of the corre-
lations first treated classically by Wannier. A calculation
by Crothers [9] for of the ionization of helium atoms by
electron impact did incorporate the electron correlations,
but did not consider higher order terms in the asymptotic
development underlying Wannier's theory and was there-
fore unable to represent the correlations over an extended
energy range. The difficulties of incorporating Wannier's
correlations in quantal theories has prompted many re-
searchers to resort to purely classical calculations [10,11].
This is quite natural, since the Wannier correlations are
readily computed for classical orbits, but are difficult to
include in quantal wave functions. Such classical descrip-
tions can only be provisional, however, and a fully quantal
theory represents a constant goal [8].

We have shown how the Wannier threshold law for
the ionization of hydrogen atoms by proton impact
emerges from the hidden crossing theory [12,13] which
employs adiabatic electron eigenfunctions computed at
fixed internuclear distance, Solov'ev [14]. For electron
impact, theory employs the hyperspherical representation
[2,15—17]. In this work we report the first calculations
of ionization of atomic hydrogen by electron impact using
the hidden crossing theory. Our computations generally
agree well with experiment over an extended energy
range, thus the hidden crossing theory provides a means
to incorporate the many fragmentary insights that have
emerged over the years into a complete ab initio theory of
electron correlations near the Wannier threshold.

The adiabatic energy eigenvalues a(R) at complex hy-
peradius R represent the fundamental quantities in the hid-
den crossing theory. As in the theory for proton impact,
the existence of a region where the eigenfunctions have
harmonic oscillator structure [18] is essential to realize the
Wannier threshold law. Integration through the harmonic
oscillator region gives an asymptotic expression, the first
term being the Wannier power law F&~, where F is total
energy of the ionized electrons and g~ is the Wannier in-
dex, equal to 1.127 for electron impact on neutral atoms.
Higher order anharmonic corrections give additional non-
analytic ~E and E lnE terms. Integration through the near
zone connects the initial state with the harmonic oscilla-
tor region and determines an analytic function of F which
sets the absolute cross section at F = O.

We use the hyperspherical Hamiltonian in the form
given by Lin and co-workers [16] and basis-spline codes
developed by Boettcher and co-workers [19,20] to com-
pute e(R) for complex R. The real part of the effective
quantum number n(R) = I/Q —2~(R) plotted vs R repre-
sents a Riemann surface on which e(R) is single valued for
negative e(R). Figure 1 shows the surface for the 'S state.
Notice the broad, flat, sloping region extending to infinite
R separated from the real axis by a series of branch points.
In this region, the wave functions y(R; 9, n) of the angle
0 between the electron position vectors r], r2 and the hy-
perangle ct = arctan(r2/r~) are harmonic oscillator eigen-
functions with energy eigenvalues given by

e,~, (R) = —Co/R —Ci/R + Cp/R +, (1)

where C; are known constants derived from expansions
about the potential saddle whose values need not concern
us here. Terms R " with n ~ 2 give nonanalytic ~E
contributions to the Wannier threshold law.

The transition matrix element in the hid-
den crossing theory involves the action integral
1 = f~ [K(R) —Ko(R)] dR evaluated along a path
that starts at a small value Ro on the real axis,
goes around the first top-of-barrier branch point,
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FIG. 1. Plot of the real part of n( ) =R = }/[—2s(R)]'~~ vs R'~~

for two electrons in the field of a proton.
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FIG. 3. (a) Cross section for the ionization of atomic hydro-
gen by electron impact. The solid curve is a calculation based
on the hidden crossing theory, and the dots are the experimen-
tal data of Ref. [22]. The theory has been multiplied by 0.93
to agree with the measurements at 9 eV in order to show the
agreement between the measured and computed energy varia-
tion of the cross section. (b) Comparison of the measured spin
asymmetry (points with error bars) of Ref. [23] for electron im-
pact on atomic hydrogen with the hidden crossing theory (solid
curve).

theory has been multiplied by a factor of 0.93 in order to
show the agreement in shape over the entire energy range.
Figure 3(b) compares the computed spin asymmetry with
the spin asymmetry measured by Lubell and co-workers
[23]. The computed value of 0.6 at threshold is not in
good agreement with the measured value of 0.4, but for
energies of 1 to 10 eV the agreement is good. Our results
confirm a rapid variation of the spin asymmetry [24] be-
tween threshold and 1 eV, but quantitative agreement is
lacking. The rapid variation can be traced to anharmonic
corrections for the 3P state. For all other states the anhar-
monic corrections are small. In this connection note that
integration around the first top-of-barrier branch point also
gives the probability for excitation to states with princi-
pal quantum number n = 2, and this probability has been
computed essentially exactly for E = 0.405 au [25]. Our
calculations using the hidden crossing theory agree with
these more conventional results within 10%. Despite the
imperfect agreement at threshold, these first ab initio cal-
culations of the Wannier threshold show that theory can
accurately describe the electron-electron correlations for
two electrons when both electrons are in continuum states.

Our quantitative results using the hidden crossing theory
resolve several issues concerning the Wannier threshold

law. Firstly, absolute cross sections and spin asymmetry
in good agreement measurements over an extended energy
range are obtained. Secondly, the Wannier factor E&~ is
seen to be the first term in an asymptotic series, the higher
terms of which include nonanalytic factors. Thirdly, we
confirm [26] the importance of nonzero L even for E =
0. Finally, only the lowest harmonic oscillator mode is
used for each partial wave. Higher modes enter only
through the matching of adiabatic to diabatic functions
at R~. These contributions are negligible for neutral
atoms. The angular distribution in 0 is Gaussian for each
partial wave, but, since each Gaussian is different for the
several partial waves, the final angular distribution is not
Gaussian. The hidden crossing theory appears to get the
main features of threshold ionization correct. It can be
further developed to include small contributions from more
remote branch points, higher anharmonic corrections, and
diabatic corrections to analyze departures from the simple
Wannier predictions. Previously, these small corrections
have mainly been investigated classically.
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