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It is shown that the anomalously large double binding energy differences for even-even N = Z nuclei
are a consequence of Wigner’s SU(4) symmetry. These, and similar quantities for odd-mass and odd-
odd nuclei, provide a simple and distinct signature of this symmetry in N = Z nuclei.
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In the supermultiplet model of nuclei it is assumed
that nuclear forces are independent of isospin as well
as spin [1-3]. Nuclear states can then be characterized
by the quantum numbers of the spin-isospin or SU(4)
symmetry, giving rise to simple predictions concerning
nuclear B-decay rates and masses. The former arise
because the Fermi as well as Gamow-Teller operators
are generators of SU(4), and as such B transitions
can only occur between states belonging to the same
supermultiplet; predictions of nuclear binding energies
are obtained in a lowest-order approximation from the
permutational symmetry of the orbital part of the many-
body wave function which determines the degree of
spatial overlap between the nucleons. Since the original
work by Wigner [1] and Hund [2], it has become clear
that SU(4) symmetry is badly broken in the majority of
nuclei because of the increasing importance with mass
of the spin-orbit term in the nuclear mean-field potential.
Nevertheless, it remains a useful ansatz for studying
global properties of p- and sd-shell nuclei from a simple
perspective. Moreover, as will be shown in this Letter, it
may have a particular and renewed relevance in the study
of the heavier N = Z nuclei from %°Ni to '°°Sn, a declared
experimental goal of many of the current proposals for
new facilities based on accelerated radioactive beams [4].

The most conclusive test of SU(4) symmetry is through
a comparison with realistic shell-model calculations which
can be readily performed for nuclei up to “°Ca. The
goodness of SU(4) symmetry in the ground state is then
obtained by taking the overlap between the shell-model
wave function and the favored SU(4) representation. This
approach is followed, for example, for sd- and pf-
shell nuclei by Vogel and Ormand [5]. The overall
conclusion of such studies is that in nuclei heavier than
160 significant departures from SU(4) symmetry occur,
especially in midshell regions [6].

To obtain a test of the goodness of SU(4) symmetry
directly from masses is more difficult. Franzini and
Radicati [7] suggested the use of a ratio R(7,) of ground-
state energy differences involving four isobaric nuclei
with different isospin projections T, and showed that the
values agree rather well with the SU(4) predictions for
nuclei with masses up to A = 110. However, it was
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demonstrated subsequently [8] that this ratio R(7,) is not
very sensitive to SU(4) symmetry mixing.

In this Letter we point out that a sensitive test of SU(4)
symmetry can be made by using double binding energy
differences which also provide information concerning the
strength of the neutron-proton (np) interaction, which is
known to play a pivotal role in the structure of nuclei [9].
Recently, the quantity

8Vup(N,Z) = 3{(B(N,Z) — B(N — 2,2)]
~[B(N,Z —2) — BN — 2,Z — 2)]},

(1)

where B(N,Z) is the (negative) binding energy of an
even-even nucleus with N neutrons and Z protons, was
used by Brenner et al [10] to extract the empirical
interaction strength of the last neutron with the last
proton. A notable outcome of this analysis was the
occurrence of particularly large interaction strengths for
N = Z nuclei. Although this feature is consistent with
both schematic and realistic shell-model calculations [10],
a simple interpretation of this result is still lacking. It
is the purpose of this Letter to show that the N = Z
enhancements of |6V,,| are an unavoidable consequence
of Wigner’s SU(4) symmetry and that the degree of the
enhancement provides a sensitive test of the quality of the
symmetry itself.

A representative sample of the data is shown in
Fig. 1(a) which gives —8V,,(N, Z) (where known) for the
sd shell. While for N # Z the np interaction strength
is roughly constant and of the order of —1 MeV, the
dramatic enhancement of |6V,,| occurring for N = Z is
clearly evident. This prominent feature can be understood
from the simple perspective of Wigner’s supermultiplet
theory. Wigner’s scheme in a harmonic-oscillator shell
with degeneracy o = >.(21 + 1) implies the classification

U(dw) DO (Ugp(w) D -+ D Our(3))
® (Usr(4) O SUsr(4) D SUs(2) ® SUZ(2)). (2)
The dots refer to an appropriate labeling scheme for

the orbital part of the fermion wave function, such
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as Elliott’s SU(3) scheme [12]. The total M-fermion (a) sd shell (even-even) (b) SU(4) (even-even)
wave function transforms antisymmetrically under U(4w)
and is decomposed into an orbital part, behaving as
[M, M, M3, M4] under Uy, (w), and a spin-isospin part.
To ensure overall antisymmetry the latter by necessity
trgnsf'grmg unNder Usr(4) as the conjugate representation
[M,,M>,M;5,M,] (i.e., rows and columns of the Young
tableau interchanged) and determines the supermultiplet
§U57(4) repres’gntatiogl Auv)y A =M, — My, u = M —
Ms, and v = M3 — M,;). From the SUgr(4) D SUs(2) ®
SU7(2) reduction the possible values of S and T follow.
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The short-range character of the residual nuclear inter- FIG. 1. Barchart representation of double binding energy
action favors maximal spatial overlap between the fermi- differences (a) as observed in even-even sd-shell nuclei (in
ons which is achieved in the most symmetric Uy (@) MeV) and (b) as predicted by Wigner SU(4). The data are
representation. Antisymmetry of the overall wave func- taken from [11]; an empty square indicates that data are lacking.

The x and y coordinates of the center of a cuboid define N and

tion then requires the least symmetric Ugr(4) representa- Z and its height z defines —8V,, (N, Z) in MeV.

tion or, equivalently, the one where the eigenvalue of the
quadratic Casimir operator of SUg7(4),

gAur) = ((Auv) [Co[SUsr (D] (Auv)) lowest order [i.e., assuming unbroken SU(4) symmetry
—3AA +4) + 3u(r + 4) + dulp + 4) gnd neglecting orbital gontributi'o.ns] the binding energy

is then a + bg(0T0) with b positive. The coefficients a

+ 4pu(A + v) + 2Av, (3)  and b depend smoothly on mass number [7]. Assuming

constant coefficients for the four nuclei in (1), a simple

is minimal. expression is found for 6§V, that depends on » only. (In

For even-even nuclei the favored SU(4) representation fact, the analysis presented below remains valid if ¢ and
is (0T0), where T is the isospin of the ground state. In b depend linearly on mass number.) The result is

|

1 [4(000) — g(010) — g(010) + g(000)] = — 10, N=2z.
1 g(0T0) — ¢(0,T — 1,0) — g(0,T + 1,0) + gOTO)] = —2, N # Z.

8V,,(N.Z)/b = (4)

Wigner’s supermultiplet theory in its simplest form (i.e., without symmetry breaking—dynamical or otherwise—in spin
and/or isospin) therefore predicts [6V,,| to be 5 times larger for N = Z than for N # Z. This result is displayed in
Fig. 1(b).

It has recently been pointed out that one can analyze odd-mass nuclei in a similar way [13]. The empirical interaction
strength of the last neutron with the last proton is, in the case with N even and Z odd,

8Vup(N,Z) = 3{[B(N.Z) — BN — 2,2)] = [B(N.Z — 1) — B(IN — 2,Z — D]}, (5)

and similarly for odd-neutron nuclei. This quantity is displayed in Figs. 2(a) and 2(c) for odd-mass sd-shell nuclei and
again shows an enhancement, this time for N = Z — 1 when N is odd and N = Z + 1 when Z is odd. The favored
SU(4) representation for odd-mass nuclei is (0,7 — % 1) if %M + T iseven and (1,7 — %,0) if %M + T is odd, both
possibilities having the same eigenvalue of C,[SUgr(4)], since g(Auvr) = g(ruA). From this one obtains, in the odd-
proton case,

2[2(100) — g(100) — g(010) + g(000)] = —10, N=27+1,
8Vup(N.Z)/b =1 5[g(1, T — 3,0) = g(1.,T — 3,0) — g(0.T + 3,0) + g(0O.T — 2.0)]= —2, N>2Z + 1,
s[e(1,T = 5,0) = g(I,T + 5,00 = g(0,T — 5,0) + g0.T + 5.0 = =2, N<Z+1, (g

and similarly for odd-neutron nuclei. One thus finds enhancements in |§V,,,| which coincide with the observed ones, as
is illustrated in Figs. 2(b) and 2(d).
Finally, for nuclei with N and Z odd, the empirical np interaction can be defined as

6V,y(N,Z) =[B(N,Z) — B(N - 1,Z2)] = [B(N,Z — 1) — B(N — 1,Z — 1)], (7)
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(a) sd shell (odd-neutron)

(b) SU(4) (odd-neutron)

20 8

FIG. 2. Same as Fig. 1 but now for observed double binding
energy differences in (a) odd-neutron, (c) odd-proton, and
(e) odd-odd sd-shell nuclei and the corresponding quantity in
Wigner SU(4) in (b), (d), and (f), respectively.

and is shown for sd-shell nuclei in Fig. 2(e). The
favored SU(4) representation for odd-odd nuclei is
(010) if N =Z and (1,T — 1,1) otherwise. The same
result emerges as for the even-even case, namely,
8Vup(N,Z)/b = —10(=2) for N = Z(N # Z).

In summary, in even-even and odd-odd nuclei enhance-
ments are found for N = Z while in odd-neutron (odd-
proton) nuclei |8V,,| are enhanced for N =Z — 1 (N =
Z + 1). The observed double binding energy differences
in p-shell nuclei are qualitatively consistent with the sim-
ple SU(4) prediction, as can be seen from Table 1. More-
over, the magnitude of the extracted interaction strengths
for even-even, even-odd, and odd-odd nuclei are very
similar. These features can be understood intuitively if
the function of the double differences is considered more
closely. The first term in (1) yields the interaction of
the last two neutrons with themselves, with the remaining
neutrons and with Z protons; subtraction of the second
term then leaves the interaction of the last two neutrons

TABLE I. Observed binding energy differences |8V,,| (in
keV) in p-shell nuclei.
N=3 N=4 N=5 N=6 N=7 N=28

Z =3 6554* 5970* 2479 1979 730
Z =4 5783* 7151% 1055 1585 827
Z=5 2342 1010 6771* 5706* 2867 2288

=6 1788 1491 5727*  5841* 2221 2362
zZ =17 2574 1958 5607*  4132*
Z =238 1952 2090 4138*  3941*

“Enhanced in SU(4).

with the last two protons, and the factor of % gives
the average interaction between a single neutron and
proton. In (5), the same reasoning leads to the average
np interaction obtained from the last (odd) proton and
the last two neutrons. Thus for N = Z + 1, the §V,,
extracted should be the same as that for N = Z in the
even-even case. For N = Z — 1, the corresponding even-
even nucleus would have N = Z — 2. Similarly, the
interaction strength obtained for the odd-odd nucleus with
N = Z should correspond to that from the even-even
nucleus with N + 1 =2 + 1. Thus the 8V,, values
should appear in quartets consisting of the even-even
nucleus (N, Z), the odd-mass nuclei (N,Z — 1) and (N —
1,Z), and the odd-odd nucleus (N — 1,Z — 1). This
quartet structure is evident in the enhanced empirical
values for the p-shell nuclei shown in Table 1.

It is of interest to consider the relationship between
the original interpretation of 6V,, as a measure of
the np interaction between the “last” nucleons and the
observation of enhancements of this quantity at the N =
Z line. In this regard it is important to remember
that 6V,, is an average np interaction over the last
few nucleons and that this average reflects the many-
body nature of the problem through the configuration
mixing induced by the residual interaction. One is
then led to conclude that this average is drastically
different in N = Z nuclei. For even-even nuclei at
least, this is consistent with generalized Hartree-Fock-
Bogoliubov calculations incorporating both 7 = 0 and
T = 1 pairing. Studies using this formalism [14,15] show
that for N = Z nuclei T = 0 pairing is dominant and
determines the nuclear many-body ground state while
for N # Z nuclei T = | pairing is dominant, with the
possible exception of N = Z * 2 nuclei where both
pairing modes are competitive. This finding in even-
even nuclei (which can be understood intuitively in terms
of simple counting arguments [15]) agrees qualitatively
with the present results obtained from SU(4). This result
is also supported by shell-model calculations, since in
the latter the 6V,, enhancements disappear completely if
the T = 0 component of the two-nucleon interaction is
not consiered [10]. The interpretation involving SU(4)
employs Young tableaux which describe all valence
nucleons and hence suggests a many-body effect. It also
provides a crucial generalization of the phenomenon to
odd-mass and odd-odd systems.
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Figures 1 and 2 show that substantial deviations from
the simple SU(4) predictions occur for the sd shell. This
is a reflection of the spin-orbit interaction which increases
in importance with increasing mass and which destroys
SU(4) symmetry, since it favors one spin direction over
the other. The double energy differences in the even-
even, odd mass as well as odd-odd nuclei show a
systematic behavior at the N = Z line: a rapid decrease
towards the middle and an increase near the end of
the sd shell. While the former could be explained
(at least partially) as resulting from the decrease of
the overall interaction strength (i.e., of the coefficient
b) with increasing mass number, it would be difficult
to understand the latter, unless it is associated with a
restoration of SU(4) symmetry. The results of Vogel and
Ormand [5] for N = Z (or T = 0), obtained by taking the
overlap between the shell-model wave function and the
favored SU(4) representation, are in qualitative agreement
with what we find here from binding energy systematics
in that the overlaps first decrease with mass but increase
towards the end of the sd shell.

The sensitivity of these predictions to a small degree
of symmetry breaking can be analyzed by considering ad-
mixtures of the next-favored SU(4) representation into the
ground state. We illustrate this with the example of even-
even nuclei, which have as next-favored SU(4) represen-
tation (101) if N = Z and (2,7 — 1,0) otherwise. [An
exception to this rule occurs in doubly closed shell nuclei
where the SU(4) representation is unique.] Proceeding as
before one finds (for double binding energy differences not
involving doubly closed shell nuclei)

—10 + 82, N = Z,
8Vap(N,2)/b = { =2 —4a®, N =2Z =2, (8)
-2, N+#2Z,7Z=+2,

where o is the weight of the next-favored SU(4) represen-
tation. Away from the N = Z line, 6V,,, is completely in-
sensitive to the admixture of higher SU(4) representations.
For N = Z, however, the changes are dramatic. For a 30%
admixture («? = 0.3, which is a typical value obtained in
realistic shell-model calculations [5]), |6V,,(N = Z)| is
reduced from 10b to 7.6b, while |6V,,(N = Z * 2)| in-
creases from 2b to 3.2b. Although very schematic, this
result does show that double binding energy differences at
the N = Z line are sensitive to SU(4) symmetry breaking.

As the mass of the nucleus increases, the SU(4)
symmetry is increasingly broken. Along the N = Z line,
this is a result of two conspiring effects: the spin-orbit
term in the nuclear mean-field potential and the Coulomb
interaction, both increasing in importance with mass. So
it would seem that the N = Z enhancements in |§V,,|
will gradually disappear in the heavier nuclei. However,
this is not necessarily the case for the nuclei beyond >°Ni
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where the masses which determine 6V,, are currently
lacking. Although they have strongly admixed SU(4)
representations, these nuclei might exhibit a pseudo-SU(4)
symmetry. The latter symmetry arises by treating the pf
shell as pseudo-sd in the spirit of suggestions made by
Arima, Harvey, and Shimizu [16] and Hecht and Adler
[17] (see also [18], and references therein). The quality
of the pseudo-SU(4) symmetry in the pf shell will depend
on two conflicting effects: a pseudo-spin-orbit splitting
which is greatly reduced and a Coulomb interaction which
continues to increase with mass. A theoretical study
incorporating both effects should determine whether the
pseudo-SU(4) symmetry has any chance of surviving
in heavier nuclei. Experimentally, the pseudo-SU(4)
symmetry cannot be tested with B-decay selection rules,
since the Gamow-Teller operator is not a generator of
pseudo-SU(4). The measurement of masses and the
determination of double binding energy differences along
the N = Z line, on the other hand, should provide
a sensitive test for the existence of a pseudo-SU(4)
symmetry in nuclei.
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