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Constraints on Form Factors for Exclusive Semileptonic Heavy to Light Meson Decays
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We use rigorous QCD dispersion relations to derive model-independent bounds on the 8 7rlv,
D ~l v, and D Kl v form factors. These bounds are particularly restrictive when the value of
the observable form factor at one or more kinematic points is assumed. With reasonable assumptions
we find f0 ~ 195 MeV and that the shape of the form factor becomes severely constrained. These
constraints are useful both for model discrimination and for model-insensitive extraction of Cabibbo-
Kobayashi-Maskawa mixing parameters.

PACS numbers: 13.20.He, 12.15.Hh, 12.39.—x, 13.20.Fe

(I) Introduction —Ch. armless B-meson decays are of
great interest because the rate depends directly on a
fundamental parameter, the Cabibbo-Kobayashi-Maskawa
(CKM) matrix element ~V„b~. Its determination requires
knowledge of nonperturbative hadronic matrix elements.
Semileptonic decays involve the hadronic matrix element
of a partially conserved current, and there is hope that one
may calculate them, or at least model them, with some
precision. The inclusive charmless decay rate is only
measured at E, = E, „,where the theoretical calculation
is highly uncertain. Alternatively, one can measure exclu-
sive rates, e.g. , dl (B ~ vrev), over the whole kinematic
range. One then needs theoretical calculations of the
hadronic matrix elements. Similarly, D ~ K (D ~ vr)

semileptonic decays are interesting because they allow de-
termination of (V„( (]V,d().

In this Letter we show that one can calculate rather
good bounds on the rates for semileptonic exclusive 8 and
D decays to light pseudoscalar mesons. Parametrizing the
B~ matrix element of the Aavor-changing vector current

V~ = uy~b by

(~(p') IV I B(p)& = f+(q') (p + p')„
+ f (q') (p —p')-, (l l)

we obtain inequalities of form

F (q') ~
I f+(q')-I ~ F+(q') (1.2)

Below we describe the calculation of the functions F
The bounds are model independent. They involve a
few physical parameters: masses, decay constants, and
the 8*-8-~ coupling g~.~~ that must be determined
independently. In addition, for a strong bound one needs
the value of the form factor for at least one kinematic
point, but this may not require additional parameters.

The method we will employ is not new [1]. It was
used to obtain bounds on form factors for semileptonic
K-meson decays [2]. The method has also been applied to
the decay B ~ Det [3],but here there is an important dif-
ference [4,5]. While there are no poles below the onset of
vacuum Km, there are several resonances with masses
smaller than m~ + m~, namely, the oniumlike 8, 's. As
pointed out in Ref. [5], the case B ~ 7re v is intermediate

between these: There is exactly one resonance below the
onset of the 8-m continuum, the 8*. This is phenomeno-
logically true. It is also guaranteed in the heavy quark
limit for m small and fixed, since the 8 -8 mass splitting
is 6(1/me). In the case B ~ D the multitude of reso-
nances below m& + mD renders the method quite weak,
even though heavy quark symmetries fix the values of the
form factors at one kinematic point. For B ~ the situa-
tion is improved because there is only one such resonance.

(2) Method. —The derivation of the bounds is well
known. We present a short version here both to establish
notation and to underline where we may deviate from the
standard case. Consider the two-point function

d x e'~'(TV~(x)V, (0)) = (q~q, —
q g~, )IIr(q )

+ g~ IIt.(q ). (2.1)

In QCD the structure functions satisfy a once-subtracted
dispersion relation

BHTIg„(Q) =
q2 — Q2

ImIIT t (t)
dt

(t + Q')'
(2.2)

d«(t) I f+(t) I' —1, (2.3)

where, neglecting the light quark mass,

k (t) = —,(mt, /t) [(1 —t /t) (1 —t /t)]'1,

andt =(meum ).
(2.4}

The absorptive parts Im IIr L(q ) are obtained by inserting
real states between the two currents on the right-hand
side of Eq. (2.1). A judicious choice of p, and v makes
this a sum of positive definite terms, so one can obtain
strict inequalities by concentrating on the term with
intermediate states of Bvr pairs. For Q2 far from the
resonance region the two-point function can be computed
reliably from perturbative QCD. In particular, for large b

quark mass, Q2 = 0 is far from resonances. One resulting
inequality of this method is
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Using knowledge of the analytic structure of the
form factor plus the bound Eq. (2.3) one can derive
bounds [1,2] on the form factor in the physical region
of semileptonic decay, 0 ~ t ~ t . To this end we map
the complex t plane onto the unit disk IzI ~ I by the
transformation

t+

t+ —t
(2 5)

Next let

1
(f, g) —=

2
«f *(~l)g(~). (2.8)

fo(~) = A(e')f+(e'),
(2.9)

f, (~) =,
I

where z; are arbitrary complex numbers with Iz;I ( 1.
With this, we have

= 1 2 1I =—(fo, fo) = de w(e) If+I' ~—
2' o 77

Using Cauchy's theorem we can evaluate the other inner
products. We must bear in mind that the form factor f+ has
a pole at t = t. —= mt'*, corresponding to z. = z(t = mtt*)

2 2

inside the unit circle. For example,

Res(@f+) I,.(fi, fo) = @(z&)f+(zt) + '. (2.11)

From the positivity of the inner product we have that the
matrix (f, , f, ) has positive determinant. Inequalities (1.2)
follow; it is straightforward to display analytic expressions
for the bounding functions F . We can further improve
our bounds by including the vector meson contribution
to the absorptive part of the structure functions, and by
generalizing the calculation to nonzero Q .

As a side benefit we find that fB ( I/4vrg3/2 mt'-/mb.
This is consistent with the heavy quark symmetry relation
ftt = (msmo)' fo and the bound f& ( mD/47r from an
analogous dispersion relation [6].

(2.10)

The two branches of the root for t+ ~ t are mapped
into the unit circle g = e'~, while the regions t ~ t and
t ~ t ~ t+ are mapped into the segments of the real axis
0 ~ z & 1 and —1 & z ~ 0, respectively. In terms of this
new variable the inequality (2.3) is

1
2

de vv(9) I f+ I' —1, (2.6)
2 0

where w(8) = k(t(9))dt/dO. Next we construct a func-
tion P(z) analytic in IzI ( 1 such that IP(e'0)I2 = w(0):

2 mb(t —t ) 'i(1+z) 1+z
(I — )'i'

(2.7)

where P+ ——Qt+/(t+ —t ) .
With Ref. [2], let us define an inner product on the space

of complex functions of a real variable 0, with 0 ~ 0 (
2~, by
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FIG. l. Upper and lower bounds (solid lines) on f+(t) for
B 7t, plotted against t/M~2 The pure pole fo. rm factor
f~,~, (t) is plotted as dashed lines, while the WSB model is in
dot-dashed lines. The bound is from the (a) 2 x 2, (b) 3 x 3,
and (c), (d) 4 X 4 determinants. In (b) we assume f+(t ) =
f~,~, (t ). In (c) we use f+(0) from the WSB model and f+(t )
from 8* pole dominance. In (d) we use as inputs f+(t ) and

f+ (t —2m~m ) from the pole dominance assumption of heavy
meson chiral perturbation theory. At the scale of the figure the
bounds are indistinguishable.

(3) Analysis and discussion . B—~: The bounds
on f+ require explicit knowledge of the residue
F. = ftt*gtt tt H. eavy quark symmetries imply gtt tt„/
mtt = gD*D /mo and fB- ——mttftt, at leading order
An experimental upper bound on the D * width [7],
together with measurements of the D* decay fractions [8],
gives (using 90% confidence values) [9] 0.06 ~ g2 ~ 0.5,
where g = f~gD*D~/m~ to leading order in heavy meson
chiral perturbation theory [10]. Monte Carlo simulations
of quenched lattice QCD give fs(MeV) in the range [11]
150—290 with about 20% errors, and an unquenched
calculation gives [12] 200 ~ 48. Clearly F. is poorly
known. In what follows we shall take F. = 33 GeV,
corresponding to g = 0.5 and ftt = 220 MeV. Our
bounds are stronger for larger F., so the value we have
chosen is not conservative, but rather intended to illus-
trate the potential of the method. We also take Q2 =
—16 GeV, which is chosen to be closer to the resonance
region without violating our perturbative QCD assump-
tion. This typically narrows the band between the upper
and lower bounds by (10—15)%. The results of Ref. [2]
may be used to gauge the reliability of this choice of
Q . In addition, we include the contribution of the B* to
our dispersion relation, but the resulting improvement is
typically only a few percent.

Figure 1(a) shows as solid lines the upper and lower
bounds from the 2 X 2 determinant. The abscissa in all
B-meson plots is presented in units of t/mt'. For reference
we have plotted as dashed lines a "pure pole" form factor
fo, ~, (t) = F, /(mtt- —t). Although not very stringent, this
bound uses the minimal set of assumptions and could
be used to put a rigorous lower bound on IV„bI from a
measurement of the width of B me v.
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Bounds using the value of f+ at one or more points
are significantly more restrictive. The proximity of the
B* pole to the region of maximum momentum transfer
suggests f+(t ) = f~,~, (t ) to good approximation. We
make this assumption in Fig. 1(b), which requires a 3 x 3
determinant. The dashed line shows the simple pole curve,
which, remarkably, falls outside the region allowed by our
bounds for values of momentum transfer close to t . We
find one must decrease the value of F. to 23 GeV before
the pole term lies entirely within the allowed region.

There are several models for f+ in the literature. They
are intended to give a numerical approximation to the
actual form factor in the physical region for B vrev.
One can test whether a particular model is consistent with
QCD by using an arbitrary number of points f+(t;) in our
bounds. %'e will content ourselves with bounds that use
the value of f+ at two points. This requires a computation
with a 4 x 4 determinant. We take f+ (t ) = fr, ~, (t ) as
above, and fix a second point f+(t;) from the model under
scrutiny.

The model of Wirbel, Stech, and Bauer (WSB) has

f+(0) = 0.33, and assumes a single B*-pole shape [13].
Presumably it is not intended to describe the form factor
accurately as t ~ t [14]. Figure 1(c) shows the bounds
obtained using f+(0) from this model as a solid line, the
pure pole f~,~, (t) as a dashed line, and the WSB model
prediction as a dot-dashed line. For the given value of F.,
WSB falls outside of our bounds over the entire physical
range. For F. ( 23 GeV, the WSB curve lies within the
bounds over a range from t = 0 to some t„;„where t„,,
increases as F. decreases, A revised version of the model
of Scora and Isgur [15] gives a somewhat smaller form
factor for B m. , leading to a smaller value of t„;,.

The validity of chiral perturbation theory for heavy
mesons hinges on single pole dominance of f+ at and near
t = t Figure 1(d). shows the bounds using input nor-
malizations f+(t ) = f~,~, (t ) and f+(t —2m&m ) =
f~„~,(t —2mttm ). This simply assumes heavy meson
chiral perturbation theory is valid at both F. = m„and
2m . The pure pole is again shown as a dashed line. Ei-
ther the effects of higher resonances are non-negligible,
or the value of F. is inconsistent with chiral perturbation
theory. Insisting on the validity of heavy meson chiral
perturbation theory in this range implies an upper bound,
F. ~ 10 GeV . Substituting the lower bound in Ref. [9]
for g then gives fs ~ 195 MeV.

D~K, D~~: For D+ ~, D ~m, and

D,+. ~ we have m~-: ) mD + m„so we need no a
priori knowledge of the residue F. of the vector meson
pole. However, useful bounds are obtained only if
one has additional information about the form factors.
D ~ K form factors have one pole below threshold, and
must be treated like those of B ~ ~.

Assuming the value of the form factor for D
is dominated by the D*+ pole at t = t =—(mD —m„)
gives the bound in Fig. 2. We have taken Q = 0

FIG. 2. Upper and lower bounds on f~ (t) for D tr,
assuming f+(t ) = F./(mo* —t ) The. curve F./(mD. —t) is
shown as a dashed line. The abscissa is given in units of t/MD.

and F. = 2.5 GeV, and plotted the pure pole in dashes.
A more restrictive bound follows from using two normali-
zation points, as in the B-meson analysis. However, the
perturbative QCD calculation is less reliable than in the
B-meson case.

The experimental measurements of for [16] are one to
two standard deviations from the bound of Ref. [6]. How
this bound eventually fares will shed light on the minimal
value of Q2 consistent with reliable limits on f+o (t).

In summary, the analytic structure of form factors for
heavy to light semileptonic meson decays makes them
well suited to analysis by simple dispersion relations. The
validity of this analysis depends on the use of perturbative
QCD calculations at a distance Mtt-o + Q2 from the
resonance region.

For B ~ mlv decays, only the value of the product
of the decay constant fs and the coupling gtt*tt~, F. =
f~*ga ~~, is necessary for model-independent bounds on
the experimentally accessible pion form factor f+(q2).
For D ~l v and D Kl v decays, even this input is
unnecessary. Together with experimental data, these form
factor bounds yield model-independent lower bounds on
the Cabibbo-Kobayashi-Maskawa parameters ) V„b (, ( V, , (,
and I V,„I.

Much more restrictive form factor bounds result if the
value of f+(q ) is known at a single kinematic point. This
normalization may come from experiment, lattice calcu-
lations, or phenomenological and QCD-inspired models.
These form factor bounds allow the experimental extrac-
tion of both upper and lower bounds on CKM angles, and
place significant restrictions on models. For example, us-

ing a one-point normalization, we show that heavy meson
chiral perturbation theory with minimal particle content is
inconsistent for values of F. ) 23 GeV .

Using the normalization of f+(q ) at two kinematic
points yields even more restrictive form factor bounds.
Typically the shape of the form factor between the
normalization points is very severely constrained. This
can be used to interpolate between models in disparate
regions of phase space, or to restrict the parameter space
of a given model. In the case of heavy meson chiral
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perturbation theory, we find consistency only if F. (
10 GeV . This translates into the prediction fz (
195 MeV. Similar analyses may be applied to other
models. We hope to present the consequences of our
bounds more thoroughly in a future work.
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