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Properties of the a1 Meson from Lattice QCD
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We determine the mass and decay constant of the al meson using Monte Carlo simulation of
lattice QCD. We find M„=1250 + 80 MeV and f„=0.30 ~ 0.03 (GeV)2, in good agreement with
experiment.

PACS numbers: 12.38.Gc, 12.40.Yx, 13.20.Jf, 14.40.Cs

First seen as a resonance in pion-proton scattering, the
axial vector meson ai remained an elusive prey due to
its large width and the presence of strong background
signals [1]. Since 1986 the properties of the ai have been
measured more precisely through the decay of the tau
lepton to three pions: r ~ v, ai ~ v, p7r ~ v, 7r7r~ [2].

The decay of the a& is parametrized by the W ~ a]
vertex which, in the conventions of Tsai [3], is defined in
terms of a dimensionful decay constant f„as

I ~'(W ~ al) —= if„(p—)g~'. (1)
In this definition f„has units of [mass]2. The mass
and decay constants are both quantities accessible to
measurement from lattice QCD. In this work we describe
a lattice calculation of the mass and decay constants of the
a~ meson and compare our results to experiment.

The quantities measured on the lattice which give the
a& mass and decay constants are two-point correlation
functions

c,, (t) = (olo, (t)o, (0)lo), (2)
which, for large t, reduce to a single decaying exponential
(plus boundary terms):

(3)c(t) ' & aMt-Zl Z

2aM
where M is the mass of the lightest particle that couples to
0, a is the lattice spacing, and the Z's are the appropriate
source and sink matrix elements, Z; = (0~0;~M). In order
to couple to the a~, the operator we use is the local axial-
vector current A; = il'ty;y5$. For the operator which
creates the state, we gauge fix to Coulomb gauge and
use an axial current operator in which the quark and
antiquark are created with Gaussian spatial distributions
about a source point. To measure the decay constant
we compute two kinds of correlation functions, ones in
which the second operator is identical to the source and
ones in which the second operator is the local current. A
simultaneous fit to the two correlators allows an extraction
of the mass and decay constant. We parametrize the
matrix element for the local sinks as

Zp = (O~A;(a()—:M, f, "e;, (4)
where f,""is dimensionless.

The simulations were carried out on the Connection Ma-
chine CM-2 at the Supercomputer Computations Research
Institute at Florida State University. We used the ensem-
ble of configurations generated by the HEMCGC Collabo-
ration with two Ilavors of dynamical staggered quarks [4].
The configurations were generated using the hybrid molec-
ular dynamics (HMD) algorithm [5]. The size of the lat-
tices is 16' X 32, the lattice coupling is P = 6/g2 = 5.6,
and the dynamical quark masses in lattice units a are
amq = 0.010 and 0.025. Periodic boundary conditions
were used in all four directions of the lattice. The total
simulation length was 2000 simulation time units (with the
normalization of Ref. [6]) at each quark mass value. We
analyzed lattices spaced by 20 HMD time units, for a total
of 100 lattices at each mass value.

The spectroscopy was computed with six values of
the Wilson quark hopping parameter: ~ = 0.1600, 0.1585,
0.1565, 0.1525, 0.1410, and 0.1320. The first three values
are rather light quarks (the pseudoscalar mass in lattice
units ranges from about 0.25 to 0.45), and the other three
values correspond to heavy quarks (pseudoscalar mass
from 0.65 to 1.5). Our inversion technique is conjugate
gradient with preconditioning via incomplete lower-upper
(ILU) decomposition by checkerboards [7]. For more
details about the dynamical staggered fermion simulations
see Refs. [4,8]. Since we use sources for the propagators
which are extended in space, we fix gauge to the lattice
Coulomb gauge using an overrelaxation method [9].

A few words are in order about our implicit assump-
tions. The state created by the correlator at asymptotic
Euclidean time t is the on-shell (physical) ai, and so
the matrix element calculated is the on-shell decay con-
stant. In tau decay the produced a] is usually virtual
(not at the peak of its resonance) and therefore is not "on
shell. " In practice, the off-shell production of the a] is
entangled with its decay into three pions, which has to
be modeled somehow. To make contact with tau decay,
we follow the phenomenological analysis of Isgur, Morn-
ingstar, and Reader (IMR) [10], which parametrizes tau
decay into a& in terms of the on-shell decay constant. The
calculation is in complete analogy with the decay chain
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e+ e ~ p m m, where the rho decay constant is taken
to be a constant f~ and the decay into pions is modeled
by an on-shell rho decay matrix element. This calculation
neglects processes where the ai Bows backwards in time.
In addition to extracting f„from data, IMR also present
a calculation of it in a quark model; our work replaces the
quark model calculation with a direct determination of the
decay constant from QCD.

At present, it is not possible in lattice QCD to include
the decay of the ai into p and m mesons, which would
give us the off-shell form factors.

In order to find the continuum a] mass M„and decay
constant fc,'"', it is necessary to compute four quantities:
the lattice mass aM, , the lattice spacing a, the strong
coupling constant defined in a particular prescription n~,
and the lattice decay constant fL".

The lattice mass is measured by performing a two-
parameter correlated fit [11]to the axial-vector propagators
for the three lightest quark-antiquark pairs. The results of
these fits are presented elsewhere [12]. Since the valence
quarks in the simulation are much heavier than the physical
u and d quarks, we extrapolate linearly to zero quark mass.
We find

for
for

0.670 ~ 0.018 amq = 0.010,
0.738 ~ 0,049 am = 0 025.

The errors in these numbers are purely statistical.
One expects [13] the mass difference between heavy

Q0 L = 1 states and L = 0 states to be weakly dependent
upon the quark mass, and so we use the quarkonium
S-P mass splitting to determine the lattice spacing. This
calculation is performed in our companion work [12] with
the conclusion that

a
1900 ~ 50 ~ 100 MeV for amq = 0.010,
1660 ~ 110 ~ 100 MeV for amq = 0.025.

(7)
The first error is statistical and the second is our estimate
of the systematic uncertainties implicit in choosing the
S-P mass splitting as the physical quantity to set the scale.
Thus we find for the mass of the ai

1270 ~ 80 MeV for amq = 0.010,
1230 140 MeV for amq = 0.025.

Although the quantities we calculate on the lattice
change with the sea quark lattice mass as seen in (5)
and (6), the physical observables are independent of the
mass of the dynamical fermions within errors. This has
been true of all lattice calculations of the QCD spectrum
to date. Therefore we treat the two simulations as
independent and average the two results giving a physical
a] Illass of

M„=1250 ~ 80 MeV . (8)
This is in very good agreement with the experimental
value 1230(40) MeV [14]. With these definitions of the
lattice spacing the same simulations predict rho masses of
680(40) and 640(60) MeV and nucleon masses of 990(60)

and 920(80) MeV for lattice quark masses amq = 0.010
and 0.025, respectively.

To compute the lattice decay constant, we perform a
three-parameter correlated fit to the two different correla-
tion functions for the three lightest quarkonium states and
extrapolate to zero quark mass. We find

Lat
ai

0.881 + 0.036 for amq = 0.010,
0.803 ~ 0.056 for amq = 0.025. (9)

and o. & is the running coupling constant defined through
the potential on the lattice at a momentum scale q =
1.03/a. Through the expectation value of the plaquette,
we measured the strong coupling at q = 3.41/a and ran
it down to q = 1.03/a using the two-loop QCD beta
function. For our two values of the sea quark mass,
amq = 0.010 and 0.025, we found that nv = 0.29(5) and
0.31(5). Therefore the continuum a~ decay constant is
calculated to be

0.33 ~ 0.04 (GeV)~ for amq = 0.010,
0.27 ~ 0.05 (GeV)~ for am = 0.025.

(11)
Again, we treat these results as independent determina-
tions of the same quantity and average them to get

f.',""' = O. 3O ~ O.O3 (Gev)'. (12)

The calculation of a branching fraction is very compli-
cated due to the large width of the a~ [2,10]. The value
of f„quoted in the 1989 paper by Isgur, Morningstar,
and Reader was derived phenomenologically using the ab-
solute rate for r ~ v, ~sr~ [16]. They found that the
experimental data at thai time gave the following decay
constant [17]:

fr~R = 0.25 ~ 0.02 (GeV) . (13)

This is in good agreement with our theoretical calculation.
We can attempt a similar calculation of the mass and

decay constant of the strange axial vector meson, the K~.
However, this calculation is not complete. The physical
K~(1270) and K~(1400) mesons are combinations of the
'P& and 'P& states [19]. While the correlator in Eqs. (2)
and (3) couples asymptotically to the lightest state which
has nonzero overlap with its operators, the contamination
of the next state only dies away as exp( —EMt), where
AM is the mass gap. The two Kt states are close in
mass, and since we do not have multiple operators to
do a multistate fit [20], we cannot be sure that we are
seeing the lighter K~. Nevertheless, in the absence of
other theoretical predictions, we attempt a calculation.

In order to extract the continuum value from the lattice
value, we must set the scale with the lattice spacing
and multiply by a renormalization factor to convert from
lattice to continuum regularization. We use the tadpole-
improved formalism of Ref. [15],where

2 121f„'"'= f„"(aM„)— —(1 —0.31ny),
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Fixing the @ meson to its physical mass gives us

K„the Wilson hopping parameter corresponding to the
the strange quark mass. Then we are able to find the
lattice mass and lattice decay constant by extrapolating
the lighter quark to zero mass while holding the heavy
quark at the strange quark mass. Finally, we must correct
the factor of 1/4 in Eq. (10), since only one quark is light
[15,21]:

1 21
fir,

'"' = f~,"(aMIr, ) — — 1 — (1 —0.31av),
Q 2 4~,

(14)
where ~, is the hopping parameter where the renormalized
quark masses vanish, i.e., K ~ K is the chiral limit.

With these caveats, we report lattice measurements of
Mir, = 1390 4- 80 MeV and fir, = 0.33 ~ 0.03 (GeV) .

We conclude by remarking that these calculations
are extremely straightforward extensions of commonly
performed lattice measurements. We encourage other
lattice groups to do them, so that the sensitivity of these
predictions to the standard lattice systematics (lattice
spacing, simulation volume, quenching vs dynamical
quark mass) can be explored. We also encourage the
lattice community to consider tau decay as a source of
phenomenological problems.
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