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Geometrical Exponents of Contour Loops on Random Gaussian Surfaces
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We derive the universal geometrical exponents of contour loops on equilibrium rough surfaces, using
analytical scaling arguments (confirmed numerically): the fractal dimension Dy, the distribution of
contour lengths, and the probability that two points are connected by a contour. This is sufficient to
calculate exact critical exponents in certain nontrivial two-dimensional spin models that can be mapped
to interface models. The novel scaling relation between D, and the roughness exponent that we find
can be used to analyze scanning tunneling microscopy images of rough metal surfaces.

PACS numbers: 05.40.+j, 61.43.Hv, 68.35.Bs, 75.10.Hk

The study of random Gaussian surfaces has permeated
many different areas of physics, ranging from models of
biological membranes and crystalline surfaces to string
theory [1]. They have been successfully used as a tool for
understanding phase transitions in two-dimensional mod-
els that can be mapped to a two-dimensional Coulomb
gas [2]. These surfaces are self-affine, and have also
been widely used to model growth-roughened metal sur-
faces [3]. Fluctuations in these disparate systems, be they
thermal (membranes and interfaces), quantum (strings), or
due to a random driving force (deposited surfaces), are
those of a random Gaussian surface, and their strength is
governed by the stiffness K. In this Letter we show that
certain geometrical exponents of random Gaussian sur-
faces are independent of the stiffness: namely, those asso-
ciated with contour loops. This result leads to an exact
calculation of all the critical exponents in certain two-
dimensional lattice models, and a novel scaling relation
for self-affine surfaces. We also propose the experimen-
tal measurement of these geometrical exponents in STM
studies of rough metal surfaces.

(a) Definitions.— A random Gaussian surface is given
by the height function A(r), r € R?. We assume that the
height takes its values in &R? or on a circle. The former is
used in models of membranes and rough surfaces [1], and
the latter is encountered in the Coulomb gas description of
two-dimensional critical lattice models [2], and has been
studied widely in conformal field theory [4].

The probability distribution functional of A(r) is given
by the Boltzmann factor e /¢[*], where f, is the Gaussian
free energy
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The constant K is the (dimensionless) stiffness, h(q) is
the Fourier transform of the height, { is the roughness
exponent, and 1/a is the large momentum cutoff provided
by the lattice spacing a. For random Gaussian surfaces
encountered in the study of critical models ¢ = 0, while
a nonzero roughness (0=¢ =1) is typical of growth
roughened metal surfaces. The above free energy also
describes height fluctuations in the Edwards-Wilkinson
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(¢ = 0) and the Mullins-Herring ({ = 1) models of non-
equilibrium surface growth [5].

Now we consider a contour plot of a random Gaussian
surface with a fixed spacing A between heights of succes-
sive contours. In scanning tunneling microscopy (STM)
images of rough metal surfaces A is usually the height of a
single step on the surface; here we take it to be an arbitrary
constant much smaller than the typical (rms) fluctuation
of A(r). The contour plot consists of closed nonintersect-
ing lines in the plane that connect points of equal height
(Fig. 1). In this way to each random surface configuration
we assign a configuration of the contour ensemble.

We define a contour correlation function G(r), which
measures the probability that two points separated by r
lie on the same contour loop. The contour lines are
considered to be of finite width given by the cutoff a.
Because of rotational symmetry of the contour ensemble
Gi(r) depends on r only, and for large separations (r > a)
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FIG. 1. Contour plot of a { = 0 random Gaussian surface.
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it falls off as a power law (as will be shown below),

Gi(r) ~ — @

r2x| )
In many critical models on the lattice that renormalize to
a Coulomb gas, the exponent x; appears as the scaling
dimension of a “magnetic” type operator [2].
The fractal dimension Dy is the exponent which relates
the length s of a contour to its radius R,

s ~ RPs, 3)

where R is defined as the radius of the smallest disk
that contains the contour, and s is measured with a ruler
of length a. We assume that contours are self-similar,
in which case D, also governs the dependence of s on
the ruler length a. The fractal dimension characterizes
the shapes of the perimeters of islands one sees in STM
images of growth-roughened metal surfaces; a particularly
nice example is provided by a recent study of Ag growth
on Ag(111) [6].

The distribution of contour lengths P(s) measures the
probability that a contour which passes through a fixed
point in the plane has a length s, and is given by a power
law (as will be shown below),

P(s) ~ s 771 C))]

(b) Scaling relations.—The fluctuations of a random
Gaussian surface are invariant under the rescaling,

h(r) — ¢ ¢ h(er) (5)

where ¢ > 1 is an arbitrary constant. This invariance is
expressed by the fact that the free energy f, is a fixed
point of a momentum-shell renormalization group that
consists of integrating out the “fast” Fourier components
of the height {Ai(q) : 1/ca < |q| < 1/a}, followed by a
rescaling of r and & as given by Eq. (5), which restores
the cutoff a to its original value.

If we parametrize a contour as I(s), where s is the arc
length as measured by a ruler of length a, then after the
rescaling given by Eq. (5) it is mapped to

I(s) = ¢ U(cPrs) . 6)

In using Eq. (6), we must assume that the contours of
the height function obtained by coarse graining a given
realization of h(r) are essentially the same as the coarse-
grained version of the contours of A(r). This scaling
property of the contour ensemble justifies the power law
dependence of Gi(r) on r and P(s) on s, in Egs. (2)
and (4), respectively, and it leads to the conclusion that
x1 1s independent of K. This is to be expected since
contour loops are insensitive to the amplitude of height
fluctuations, which is controlled by the stiffness. Also
note that Eqgs. (5) and (6) are valid for any self-affine
surface, not just a Gaussian one.

The fractal dimension Dy and the exponent 7 can
be related to the exponent x; by the following simple
scaling argument, similar to the one given by Saleur and

Duplantier [7]. First, consider the ensemble mean y(R) of
the length of that portion of the contour passing through
the origin 0 which lies within a radius R from 0. This is
proportional to the following integral:

R
X(R) ~ fo Gi(v) d’r. %

On the other hand, using the distribution of contour
lengths Eq. (4), we can estimate y(R) as

X(R) ~ [000 min(s, R/ )P(s) ds . )

The factor s is used for contours whose radius is less than
R; for contours whose radius is greater than R, the portion
within a distance R from the origin has length ~ R?r.
Equating the right-hand sides of Egs. (7) and (8) we find
the scaling relation

Df(3~—7')=2—2x1. (9)

Second, the average number of contours per unit area
n(R), with a radius comparable to R, scales with R as

n(R) ~ R72%¢ . (10)

To come to this conclusion first apply the rescaling Eq. (5)
to each configuration of A(r), and then consider its action
on the contour ensemble. Consider the fotal number of
contours in a box of side R and of radius comparable
to it, R?n(R). Since the contours are mapped one-to-one
in Eq. (6), we can identify this with the number of new
contours in a box of side R/c and of comparable radius,
(R/c)*n'(R/c) = R?n(R). The new contour ensemble has
a rescaled contour interval A’ = ¢ ¢A, but otherwise it
has the same probability weighting as the original one,
so n'(R) = c*n(R). Combining these two equations yields
Eq. (10).

On the other hand, the number density n(R) can also be
calculated from the distribution of loop lengths as

0

n(R) ~ fRDf P(s)ds, (11)

where P(s) ~ P(s)/s is the probability for a randomly
chosen loop to have a length s [as opposed to P(s) for
loops going through a fixed point]. Equating Egs. (10)
and (11) leads to the second scaling relation

Dj(r—1)=2-¢. (12)

The scaling relations Eqgs. (9) and (12) for ¢ = 0 have
been recently derived by Cardy [8] for Wilson loops in
the complex O(n) model.

Finally, from the scaling relations Egs. (9) and (12), we
find for the fractal dimension Dy and the exponent 7,

2-¢
2—x1—§/2‘(13)

The first scaling relation is reminiscent of the relation

D=2-/¢ 14

Dy =2—x —{/2, T—1=
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due to Mandelbrot [9]. The important difference is that
this relation gives the fractal dimension D of the level
set of a random Gaussian surface, and not the fractal
dimension of a single contour loop. Moreover, Eq. (14)
can be easily derived within our framework: Instead of
the contour correlation function the correlation function
that measures the probability that two points have the
same height needs to be considered. It can be shown that
this probability is governed by the exponent ¢ (x; = {/2),
which leads to Mandelbrot’s result, after having made use
of the scaling relation Eq. (13).

Now we turn our attention to the contour correlation
exponent x;. It has been calculated exactly in the case
{ = 0, from the mapping of the four-state Potts model to
a solid-on-solid model [7], x; = 1/2. We suspect that the
value of x; in the { = 0 ensemble can be calculated using
a renormalization group based on the rescaling Egs. (5)
and (6), but we find that this is a nontrivial problem.

We argue that the result x; = 1/2 is universal, inde-
pendent of . The fractal dimension D of a contour loop
must satisfy D = Dy = 1, since it is a subset of the level
set and has topological dimension one. From this and
Eq. (14) we conclude that for { = 1 the fractal dimen-
sion of a contour loop is Dy = 1, which in turn leads to
x; = 1/2 from Eq. (13). Now we conjecture that x, is a
monotonic function of / (0 = ¢ = 1) from which we con-
clude that the exponent x; must be constant. The formula
for Ds that follows from Eq. (13) differs from the one
proposed by Isichenko [10] [D; = (10 — 3¢)/7], which
was derived from an approximate “multiscale” analysis.

(c) Simulation results.—In order to check the above
calculations we have done numerical simulations of a
random Gaussian surface for { = 0. We generate a large
number of surface configurations by doing a fast Fourier
transform of &(q) which is sampled from the Boltzmann
distribution with a free energy given by the Gaussian
model. This model is a discrete version of fy defined on
the square lattice. For each generated surface we measure
the length s and radius R for a contour loop passing
through a point picked at random; the contour is a walk on
the dual lattice that cuts those bonds of the square lattice
that have vertices with heights lying above and below the
contour height. The data from 5000 surfaces are plotted
on a logarithmic scale in Fig. 2. From a least-squares
fit of the data by a line we find Dy = 1.49 + 0.01 and
7 — 1 = 1.35 £ 0.03, both in agreement with Eq. (13) for
¢l =0andx, = 1/2.

For the remainder of this Letter we discuss the rel-
evance of these results for calculating exact exponents
in two-dimensional critical lattice models and for experi-
ments on rough metal surfaces.

(d) Critical models.—The fluctuations in many two-
dimensional models are well described by fo, which is
equivalent by a duality to the vacuum phase of the
two-dimensional Coulomb gas [2]. Here we consider a
slightly more general case of a height function with d
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FIG. 2. The radius R (X) as a function of the length s of a
contour, and the distribution of contour lengths P(s) (o) in the
Gaussian model. P(s) is the total number of loops of length
s, binned in intervals of 0.1s at each s. The lines are best
fits for 10 < R < 100 and 10 < s < 300, respectively. Note
that scaling breaks down for small contours due to the cutoff
provided by the lattice spacing, and for large contours due to
the system size (128 X 128).

components which describes a two-dimensional interface
in d + 2 dimensions; all the results derived for d = 1
carry over. Two critical lattice models that we have
studied are the n = 2 fully packed loop (FPL) model on
the honeycomb lattice [11] and the four-coloring model
on the square lattice [12].

It has been recently shown [13] that the » = 2 FPL
model is equivalent to the three-coloring model on the
honeycomb lattice, which has been exactly solved by
Baxter [14]. The three-coloring model can be mapped
onto a { = 0 random Gaussian surface with two height
components (d = 2). Contour loops correspond to loops
of alternating color, and the contour correlation function
exponent can be calculated from Baxter’s exact solution to
give x; = 1/2 [13]. This result has also been confirmed
numerically [11], and is in agreement with a recent Bethe
ansatz solution of the FPL model [15]. Moreover, the
distribution of loop lengths for loops of alternating color
has been investigated numerically [16], and the exponent
in Eq. (4), was found to be 1.34 = 0.02, in good agreement
with the exact result 7 — 1 = 4/3 from Eq. (13).

The four-coloring model on the square lattice can be
mapped onto a ¢ = 0 random Gaussian surface with
three height components (d = 3) [17]. Contour loops
correspond to loops of alternating color, and recent
simulations of this model [17] have found x; = 0.497 *+
0.004, Dy = 1.501 *= 0.003, and 7 — 1 = 1.30 £ 0.03, all
in excellent agreement with our analytical results.

In the above-mentioned models, we have identified the
exponent x; with the scaling dimension of a particular
“magnetic” charge b; of the Coulomb gas [13,17], 2x; =
K/2w bf. From this we have calculated the stiffness
K, and consequently all the critical exponents. In the
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n = 2 FPL model, for which an exact solution exists, we
recover the exponents found previously, while in the case
of the four-coloring model we find exponents that are in
agreement with the conjecture put forward by Read [12]
that this model is in the universality class of the SU(4);—;
Wess-Zumino-Witten model.

Finally, we remark that contour exponents analogous
to x;, 7, and Dy may also be defined for spin models
(e.g., Potts models [7]) with noninteger conformal charge,
but in those cases x; # 1/2, which can be ascribed to the
presence of a background charge in the Coulomb gas [7].

(e) Rough metal surfaces.—Rough metal surfaces ob-
tained under different nonequilibrium growth conditions
are often found to have the same scaling property Eq. (5)
as random Gaussian surfaces. From STM measurements
of these surfaces the height can be extracted and the frac-
tal dimension of contour loops determined. Using the
scaling relationship Eq. (13), and the value of the expo-
nent x; = 1/2, the roughness exponent { can be calcu-
lated and compared to the values predicted by different
models of surface growth.

Measurements of this kind have been carried out
recently on gold deposits by Gémez-Rodfiguez, Bar6, and
Salvarezza [18]. From STM images of deposits grown
in the fast and slow regimes they determine the fractal
dimension to be Dy =~ 1.5 and D; =~ 1.3, respectively.
We calculate the roughness in these two regimes to be
=0 and ¢ = 04. The first is expected for Edwards-
Wilkinson type of growth, while the second is in good
agreement with the Kardar-Parisi-Zhang equation [3].

Recently STM images of equilibrium metal surfaces
above the roughening transition have also been obtained
[19]. The thermal height fluctuations of these surfaces
are described by fo [20]. We propose that the fractal
dimension of contours can be extracted from the data
and compared to Dy = 3/2, which is what we expect for
{ = 0 roughness.

In conclusion, we have calculated the geometric expo-
nents related to the contour correlation function, the frac-
tal dimension, and the distribution of contour lengths, for
contour loops on random Gaussian surfaces. These results
can be used for calculating critical exponents in certain
two-dimensional models with integer conformal charge,
and they lead to a novel scaling relation for self-affine
surfaces that can be used for extracting the roughness ex-
ponent from STM images of rough surfaces.

We would like to acknowledge useful discussions with
D. M. Goodstein, E. B. Kolomeisky, J. Krim, T. Vicsek,
and M. Avellaneda. This work was supported by NSF
Grant No. DMR-9214943.

Note added.— Avellaneda et al [21] have found
numerically Dy = 1.28 = 0.015 for a { = 0.5 surface,

which is close to the predicted value D; = 1.25, from
Eq. (13). We are grateful to M. B. Isichenko for bringing
this result to our attention.
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