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Thermally Driven Escape with Fluctuating Potentials: A New Type of Resonant Activation
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The mean escape time T for thermal diffusion in a fluctuating metastable potential is investigated. A
new type of "resonant activation" (minimum of T as a function of the correlation time r of the potential
fluctuations) is predicted analytically, explained in simple terms, and confirmed numerically. In its pure
form it generically occurs for potentials without fluctuations near the barrier and the well. The effect
is dominated by a minimum in the exponentially leading Arrhenius factor at a correlation time ~ that

stays finite for asymptotically small thermal and potential fluctuations.

PACS numbers: 05.40.+j, 02.50.—r, 82.20.Mj

The thermally driven escape over potential barriers
plays an important role in chemical kinetics, the theory
of diffusion in solids, homogeneous nucleation, electrical
transport theory, etc. [1]. In many cases the potential
itself shows random fluctuations on a characteristic time
scale r that may vary over a large range [2,3]. Examples
are molecular dissociation in strongly coupled chemical
systems [4], oxygen binding to hemoglobin [5], selective
pumps for biological macromolecules, chromosomes, or
viruses [6], and recently introduced ratchet models for the
action of molecular motors [6]. In a seminal paper [7]
Doering and Gadoua detected that the mean escape time
T may show a nonmonotonic dependence on ~ with a
resonancelike absolute minimum at a finite ~ value. They
coined the term "resonant activation" for this "astonishing
phenomenon" [4] in contrast to the effect of "stochastic
resonance" that may occur when the potential is subject
to determini stic oscillati. ons [8]. Stimulated by this first
observation of "resonant activation" [7] the escape with

fluctuating potentials has recently attracted much attention

[9—17]. In this Letter we unify and extend previous
findings by means of simple arguments and we predict
a new type of resonant activation with nicer features than
the usually considered type.

We investigate the standard one-dimensional model
[2,3,7,9—15] of an overdamped particle

x(t) = —U'(x(t)) —y(r) W'(x(t)) + 42D g(t), (1)

where g(t) is 6-correlated Gaussian noise (thermal
fluctuations) and U(x) a smooth metastable potential
with a well at x = 0 and a barrier at x = 1, for in-

stance, U(x) = x~/2 —x~/3. The potential Iluctuations
are driven by a stationary Markovian random process
y(t) with a symmetric invariant density p(y) = p( —y)
that decays faster than exponentially for y» a-, where
o.~:= f y2p(y) dy. We assume [7,9—14] that the time
scale r:= f „C(r)dr/2rr~ characterizing the decay of
the correlations C(t):= (y(t)y(0)) can vary between 0
and ~ without changing p(y). An example is dichotomic
noise y(t) that flips between ~ o. at a rate 1/2r, implying

p(y) = 6((y[ —o.)/2 and C(r) = o2 e ~'~~'. Another

example is Ornstein-Uhlenbeck noise

y(t) = y(r)/r —+ $2o'/r rI(r), - (2)

where ri(t) is 8-correlated Gaussian noise, giving rise
to p(y) = 42~a. e and C(r) = o. e ~' ' We
mainly have in mind these two examples in the following
but we expect that our arguments are actually valid for
more general random processes y(t) For sim.plicity only,
we finally assume that the fluctuating part of the potential
W(x) is smooth and that x = 0 and x = I are still the
absolute minimum and maximum of U, , (x):= U(x) +
y W(x) in the regions x ~ I and x ~ 0, respectively,
for any y value with non-negligible probability p(y).
Obviously, for dichotomic noise the latter condition must
just be satisfied for U (x). For Ornstein-Uhlenbeck
noise we will come back to this condition in the last
paragraph.

A complete description of the system (1) is provided by
the time-dependent probability distribution p (x, y, t) of the
particle x and the potential fluctuations y. Its evolution
is governed by a master equation p(x, y, r) = I p(x, y, t),
where the master operator I = I + I ~. consists of
the Fokker-Planck operator I, = B,[U'(x) + DB„]corre-
sponding to the Langevin equation (1) and the evolution
operator I ~ of the Markovian random process y(t), e.g. ,

I ~
= B,, [y + o. B~]/r for Ornstein-Uhlenbeck noise (2).

The initial condition, say at time t = 0, is of the form
p(x, y, 0) = po(x) p(y), where po(x) is an initial distribu-
tion of particles mainly concentrated about the potential
well x = 0. The quantity of central interest is the mean

escape time T = f dx f dy fo dt .p(x, y, t) from the
region x ~ b (note that the integrand p is equivalent to

tp) Th—e bou. ndary b is required to be sufficiently far
beyond the barrier x = 1 that particles, once they have
left the region x ~ b, are very unlikely to return into the
domain x ~ 1. We will mainly restrict ourselves to the
most interesting case [1] that this typical escape time T is
much larger than the time scales of the deterministic dy-
namics x = —U'(x) for any y with non-negligible proba-
bility p(y). In other words, the strengths D and o.2 of the
thermal and potential fluctuations must be small in com-
parison with the barrier height 5 U:= U(1) —U(0). As a
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(3)

[r, —k(y)]P(y) = —p(y) (4)

and T = f P(y) dy. "Kinetic equations" like (4) have
been extensively studied in the context, e.g. , of random
walks with traps; see [19]and further references therein.

For very small r the particle (1) does not feel in
leading order approximation that the Iluctuations y(t) are
actually correlated, and we can replace them by white
Gaussian noise (in Stratonovich interpretation) of the
same mean (y(t)) = 0 and intensity f C(t) dt = 2r o.2

[3,15]. The well-known escape rate k of such a stochastic
process [1] has the same form as k(0) in (3) but with

fo dx U'(x)/[D + ro2W'(x)2] . instead of AU/D With.
T = k ' one thus obtains in leading order r

U'(x) W'(x) dx (5)T(r) = k(0) ' exp—

in agreement with all known rigorous results for di-
chotomic [9,10,14] and Ornstein-Uhlenbeck noise y(t)
[3,12,14,15]. Hence, for small r the mean escape time
T(r) decreases with increasing r.

consequence, T becomes independent of the exact choice
of po(x) and b [1]. As a further consequence, a particle
(1) typically spends most of its time near the well x = 0
before it escapes. The sojourn close to x = 0 is inter-
rupted by unsuccessful escape attempts and is terminated

by a successful escape attempt. It can be shown that the
time scale T of the escape attempts increases like ln D
but is still much smaller than T for sufficiently small D
and o.2 [18]. We therefore have the three relevant time
scales ~, T, and T, where T, && T and 0 ~ v. ~ ~.

Within the separation of time scales ~ && T the rate
concept applies [1],i.e., p(x, y, t) approaches an exponen-
tial decay e ~' p(x, y) in the region x ~ b on a time scale
that is negligible in comparison with T. It readily follows
that the decay rate k is equal to T, the quasi-invariant
density p(x, y) is governed by I p(x, y) = —k p(x, y), and

f p(x, y) dx = p(y). On the other hand, for r » T,
the kinetic models studied in Refs. [10,16,17] provide a
very accurate description of the problem since a particle
(1) approximately sees a static potential UY(x) during any
escape attempt and is thus successful at the well-known
Smoluchowski rate [1]

IU,"(o) U,"(1)I'" aU + y aW
k(y) = ' ' exp—2~ D

where AW:= W(l) —W(0). Therefore the probability
bP(y, t):= f p(x, y, t) dx that a particle sees a poten-

tial UY(x) and has not yet escaped from the region x ~ b

evolves under the simultaneous action of the master op-
erator I ~ governing the potential IIuctuations y(t) and

the loss rate k(y) due to successful escapes, P(y, t) =
[I ~

—k(y)]P(y, t), with initial condition P(y, 0) = p(y).
Formally the same follows [14] by adiabatic elimination
of x in the master equation governing p(x, y, t) Introduc-.
ing P(y):= fo P(y, t) dt one finally obtains

Regarding more general correlation times compatible
with a rate description, r (( T(r), we first address po-
tentials W(x) of type I by which we mean that W'(x)
does not change sign on the interval [0, 1], for instance,
W(x) = U(x). Without loss of generality, we assume that
hW ) 0 in the sequel. In this case a particle (1) typi-
cally escapes [7,20] while the potential U, (x) is in a "low"
state, y ( 0. Although the distribution p(y) is always the
same, with decreasing r any realization y(t) tends to IIuc-
tuate faster and faster, and favorable escape conditions
y(t) ( 0 during the entire typical time T, of a successful
escape attempt become less and less probable. We thus

expect that T(r) is a decreasing function of r in agree-
ment with all exactly solvable models [7,9, 10,12]. Next
we address potentials W(x) of type II defined by the prop-
erty that W(x) identically vanishes close to the well x = 0
and the barrier x = 1, for instance, W(x) = cos (2rrx) for
1/4 ~ x ~ 3/4 and W(x) = 0 else. In this case the basic
escape mechanism is sketched in Fig. 1 [for convenience
only, we focus on a single humped W(x)]: Typically, a
successful escape attempt starts while the potential U~(x)
is in a low state [Fig. 1(a)], then the particle is lifted by a
large fluctuation of y(t) [Fig. 1(b)], and finally it moves in
a potential U~(x) in a "high" state across the saddle x = 1

[Fig. 1(c)]. Since this mechanism requires one large fluc-
tuation of y(t) during a successful escape attempt, the
mean escape time T(r) will increase both when r tends
to very large and very small values. More precisely,
we expect that T(r) exhibits a minimum resonant acti-
vation at a ~ value comparable to the time that the particle
needs to pass through the domain with W(x) 4 0 during
the successful escape attempt. Closer inspection shows
[18,20] that this time is comparable to the one which the
particle would need to pass deterministically through the
same domain but in the opposite direction. Typically, this
deterministic dynamics x = —U'(x) can be roughly ap-
proximated by x = —hU in the domain with W(x) 4 0.
Under the further assumption that the length of this do-
main is comparable to the distance between the saddle
and the well of U(x), i.e. , of the order I, the minimal r
is thus of the order I/b, U. For both type I and type II
potentials the escape mechanisms as well as the properties

FIG. 1. Typical successful escape attempt for resonant activa-
tion of type II at three successive time instances. Solid lines:
lluctuating potential U, , (x) = U(x) + y W(x) for 0 s x s 1;
dashed lines: unperturbed potential U(x); arrows: motion of the
escaping particle.
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T(r) = T(0) e " ' p(y)dy =: T- (6)

for T « ~ « T . On the other hand, for extremely slow
potential fluctuations r » T(r) each realization y(t) does
practically not change on any relevant time scale. Thus
the evolution operator I ~ of y(t) in (4) is negligible and
we obtain the r-independent result

T(r) = T(0) e' p(y) dy =: T (7)
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FIG. 2. Numerical simulations of the mean escape time
T(r) out of the region x ( b = 3/2 for the noisy dynam-
ics (1) with stationary Ornstein-Uhlenbeck potential fluctua-
tions (2), U(x) = x2/2 —x3/3, W(x) = cos2(2rrx) for I/4 (
x ~ 3/4 and W(x) = 0 else, D = 0.03, cr2 = 0.0048, and an
initial distribution of particles po(x) = B(x). The numerical un-
certainty due to the time discretization and the finite number of
realizations is a few percent. The typical features of type II
resonant activation are clearly visible. The solid lines are the
asymptotically exact results T(r) = T, (0) from (8) and (9) for
small and large ~.

of T(r) discussed in this paragraph are confirmed by rig-
orous calculations [20] for asymptotically weak thermal
and Ornstein-Uhlenbeck —type potential fluctuations.

We finally discuss the regime ~ && T which overlaps
with the previous one ~ && T. Since for type II potentials
W(x) the rates (3) are y independent, the solution of (4) is
trivial, and we immediately find T(r) = T(0). Together
with the small-r asymptotics (5) this proves the existence
of resonant activation of type II independently of the
heuristic arguments in the last paragraph (see Fig. 2).
Equation (5) also shows that the effect is already present
in the exponentially leading weak noise behavior (i.e. ,
the Arrhenius factor) of T(r). Regarding non-type-II
potentials W(x) we firs note that for T, « r « T(r) both
the rate concept and the kinetic model are valid. Since
T, « r, a particle (1) approximately sees a nonfluctuating
potential U~(x) during any escape attempt and thus will
escape at a rate (3). Since the rate concept applies,
the probability that a particle which has not yet escaped
sees a potential U~(x) is given by j p(x, y) dx = p(y).
Hence the average escape rate is k = f k(y) p(y) dy
independent of 7-. With k = T ' and ignoring the y
dependence of the prefactor ~U"(0) U"(1)~'/ in (3) we
obtain

for r » T+. From our assumptions that p(y) is sym-
metric and decays faster than exponentially for y » cr
we can infer that T /T(0) = T(0)/T+ ( 1 and T+ ( ~.
For instance, one recovers [9,10] T = T(0) e —"~~/o for
dichotomic and [14] T = T(0) e — / for Ornstein-
Uhlenbeck noise y(t) I.n the first example the consis-
tency condition T, « T requires that o. ( AU/AW and
in the second that rr ( 2D AU/AW2. If T„« T were
not fulfilled and, in particular, if p(y) did not decay
faster than exponentially for large y, there would be a
regime of 7. values where neither the rate concept nor
the kinetic model would apply. In this regime the par-
ticles would typically escape while the potential barrier
is completely gone [7]. This shows that T, « T ac-
tually follows from our assumptions on p(y) and W(x)
in the second paragraph. Regarding the crossover from
(6) to (7) one expects that a particle typically will escape
with a mean escape time k(y) if it experiences a po-
tential U~(x) for which this mean escape time is smaller
than 7-. Otherwise it will wait during a time of the or-
der 7- until the fluctuations have changed the potential
U~(x) such that k(y) ' ( r. The entire escape time of
this kind of particle is thus of the order 7.. Therefore,
the mean escape time T(r) is approximately given by
J „p(y)min{k(y) ', rjdy. It is not difficult to see that
this expression increases with r and matches (6) and (7).
By closer inspection of Eq. (4) these properties of T(r)
can be rigorously proven for general Markovian random
processes y(t) [19].

For the usually considered potentials W(x) of type I
the mean escape time T(r) is monotonically decreasing
and increasing within the validity of the rate and the
kinetic description, respectively. The minimum resonant
activation 7-RA occurs in the rather extended regime
T-, «r « T where both descriptions are very good
approximations and thus T(r) is almost constant. Since
T diverges in the weak noise limit, the same follows for

The breakdown of the rate concept is thus crucial
[14] and resonant activation will not be seen within a rate
[12] or kinetic [10,16,17] description alone. The essential
quantitative properties of T(r) follow from (5)—(7). On
the other hand, for the novel type II potentials W(x)
the minimum of T(r) occurs at rRA = O(1/AU) and, in

particular, stays finite in the weak noise limit. Within
the validity of the rate formula (3), i.e., for sufficiently
small thermal and potential fluctuations, we have T(r) —=

T(0) for r » T„and the rate concept actually never
breaks down. Moreover, the assumption that the potential
fluctuations y(t) are stationary does not play a crucial
role, in contrast to the type I case [17,19). Although the
minimum of T(r) is present already in the exponentially
leading Arrhenius factor for both types according to
(5)—(7), it is sharply peaked about r = rRA only in
the type II case. For more general potentials W(x) one
finds [20] either qualitatively similar results for T(r) as
in the type I and type II cases or a truly mixed type
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of behavior with two minima. Apart from a missing
quantitative approximation for T(HARA) in the type II case,
our understanding of the escape problem (1) is thus rather
complete for small thermal and potential fluctuations.

If the fluctuations are no longer small, the different
types of resonant activation cannot be clearly distin-
guished anymore and both the rate and the kinetic de-
scriptions break down. However, for small r one still
may approximate y(t) in (1) by Gaussian white noise [3]
similarly as in the derivation of (5). Then one readily
finds [1,3] the mean first passage time T, (x) across b for
a particle (1) with seed x ~ b

below Eq. (7)], this is the quantitative version of the con-
dition introduced below Eq. (2) in the case of Ornstein-
Uhlenbeck noise y(t). In particular, it is satisfied by the
example in Fig. 2. Further, it follows that o- must decrease
at least proportional to JD in the weak noise limit. Note
that the variations of T(r)/T(0) as a function of r still be-
come exponentially large for small D as can be concluded
from (5)—(7).
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T, (x) =
v U'(z)

exp f oi,)dg
dw

QD, (v) D, (w)

where D, (x):= D + ~ o.2 W'(x)~. Similarly, in the static
limit r:~ one immediately obtains [1] the rigorous
expression

T(x)= dy p(y) dv

Uy(v) —U (w)
exp

(9)
Both (8) and (9) are valid for arbitrary D, o., and W(x),
and the mean escape time follows by averaging over the
seeds T(r) = f po(x) T,(x) dx (see Fig. 2). For small
D, one recovers Eqs. (5) and (7) as well as their finite
noise corrections which are responsible for the deviations
in Fig. 2 from the weak noise predictions T(0) = 1625
according to (3) and (5), and T(r) = T(0) for ~
Since p( —y) = p(y) we can infer from (8) and (9)
that T(0) ~ T(~), and since p(y) decreases faster than
exponentially for large y we see that T(~) is finite. The
property T(0) ~ T(~) can be used to prove the existence
of resonant activation under very general conditions For.
instance, a sufficient condition is that (8) decreases with
increasing ~ which again is certainly true if D becomes
small [14] [see Eq. (5)] or if W'(x) vanishes whenever
U'(x) & 0 and x ~ b.

For Ornstein-Uhlenbeck noise (2) the y integral in
(9) can be performed explicitly, and the integrand then
takes the form exp(F(v, w)/D)/D, where F(v, w) is given
by U(v) —U(w) + (cr~/2D) [W(v) —W(w)]2. It follows
that our previously derived weak noise results (7) and
T(r) = T(0) for potentials W(x) of types I and II, re-
spectively, are recovered from (9) only if the maximum
of F(v, w) (with the restriction w ~ v ~ b) is taken for
v = 1, w = 0. Together with o.2 ( 2D b, U/AW2 [see
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