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Local Maniere-Rowe Relations for Noneikonal Wave Fields
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The wave-action conservation laws for three-wave interactions are of fundamental importance. These
laws, known as Manley-Rowe relations, are usually obtained with great difficulty from nonlinear
evolution equations. Here, we derive them directly from a Noether symmetry of the appropriate
Lagrangian. As an example, the Lagrangian formulation for stimulated Raman scattering is presented,
and local Manley-Rowe relations, valid even for noneikonal wave fields, are derived by the Noether
method.

PACS numbers: 03.40.Kf, 52.35.Mw, 52.35.Nx

Manley-Rowe relations are wave-action conservation
laws relating to the nonlinear process of three-wave
interaction [1]. Most derivations [1,2] have involved a
large amount of algebra, and have been motivated by the
intuitive confidence that these relations are always valid.
However, a concise law should have a concise derivation;
in particular, a conservation law should proceed from a
Noether symmetry of an underlying Lagrangian [3].

In this paper, we identify the symmetry operation as a
phase shift of a complex representation of the wave fields
[4]. The Lagrangian density for this representation is ob-
tained by performing a Whitham average [5] of the real-
field Lagrangian, based on the existence of two separate
time scales: a short time scale represented by the wave
frequencies, and a long time scale associated with the evo-
lution of the wave action and of the background medium.
This approach allows us to generalize the applicability of
the Manley-Rowe relations to noneikonal conditions, i.e.,
conditions for which the eikonal approximation [6] is in-

valid, such as when wavelengths become comparable to
the background gradient scale length.

We allow the background medium to have arbitrary
spatial variation, so that the concept of local wave vector
need not be valid. Our aim is to obtain explicit local
conservation laws, in terms of gradients of the wave fields,
rather than in terms of wave vectors. We also allow for
a slow temporal variation of the background medium, as
expected physically from the ponderomotive effects of the
waves. The slowness is required for the utility of the

Cc)] + COP = M3, (2)

we further assume that the analytic signal P' consists of
three parts:

3
i

a=1

where PI represents the Fourier integral over the band at

~], and so on. Our aim is to derive local Manley-Rowe
relations of the form:

a, [Ji (x, t) —J2(x, t)] = —V [I i (x, t) —I 2(x, t)], (4a)

ii, [J3(x, t) + Ji(x, t)] = —V [I 3(x, t) + I'i(x, t)], (4b)

complex representation for the wave fields. In addition,
we do not require the waves to satisfy local dispersion
relations, thus allowing for strong turbulence.

Our basic assumption is that the frequency spectrum
of the fields W'(x, t) (i = 1, . . . , N; N is the number
of field components) allows a clear separation between
a quasistatic part 'Po(x, t) and a finite-frequency part,
P'(x, t) + P'*(x, t), expressed as twice the real part of
its analytic signal. (The latter is defined as the Fourier
integral over positive frequencies, with a low-frequency
cutoff. ) Thus we have, for each field component,

qtl + pl

Since the Manley-Rowe relations refer to wave fields in
three frequency bands, centered at (co&, co2, co3), satisfying
an approximate resonance condition:
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p) I p ('Pop~p"" + 4'op~/' + 'Pop~p~* + c.c.), (7)

and the third group consists of trilinear wave-field terms
belonging to three separate frequency bands satisfying the
resonance condition (2):

p; q P P(p' /II'"* + c.c.),

where the summation Pq is over all possible combina-
tions n + p = y, such as 1 + 2 = 3 and 2 —3 = —1,
with P

—= P*. For more general Lagrangian densities,
after W' is written as in (1) and (3), the Lagrangian
density 5 is Taylor expanded in powers of the wave
fields and, upon Whitham averaging, yields the Whitham-
averaged Lagrangian density 2 —= 5 0 +

hatt

+ J'
Dt +

, where the linear term X t is absent.
To derive the Manley-Rowe relation (4a), we note that

the Whitham-averaged Lagrangian X is invariant under
the phase shifts:

4-0ze '~, A-A,
where @ is a real constant; note that (7) and (8) are both
invariant under these phase shifts. For infinitesimal P,
the variation in 5 is thus:

B,[J3(x, t) + J2(x, t)] = —V [I 3(x, t) + I p(x, t)], (4c)

with explicit local expressions for the three wave-action
densities J (x, t) and action flux densities I' (x, t)

We begin with a Lagrangian density

X(x, t) —= L(W'(x, t), 8, 'It'(x, t), V%"(x, t); x, t), (5)

and first consider the case that 5 is multilinear in the
fields. Consider, for example, a trilinear term:

p;,„w'% jw',

where p is a differential operator, possibly with explicit
(x, t) dependence, but quasistatic in time. For each
component field we substitute (1) and (3) into (6), and
collect the 343 (= 7~) terms. We then apply Whitham
averaging [5], defined as an integration over the short
time scales represented by the wave frequencies, and
find that most of the terms vanish. Those that survive
(a total of 31) have only a slow time-scale dependence,
and fall into three groups. The first group consists only
of the background term, p;jt. 'Po+o+o, the second group
consists of bilinear wave-field terms belonging to the
same frequency band:

t', gg )J (x, t) = 2 g Im
j= 1 k ~ Pnt),

N (
I (x, t) —= 2+ Im

j= 1 c3VQn )
(12)

where Im denotes the imaginary part. Here, the time
dependence of the wave-action density J (x, t) and the
wave-action flux I (x, t) is over long time scales, and
is independent of the short time scales represented by
the wave frequencies. Notice that the complex wave-
field representation is essential for obtaining nonvanishing
expressions for the wave-action density and wave-action
flux. The factor 2 appearing in (12) ensures that the wave-
action densities and fluxes as defined here agree with
those obtained in the eikonal limit [see (21) below]. The
other two Manley-Rowe relations (4b) and (4c) can be
obtained in a similar fashion.

To illustrate the Manley-Rowe relations (4a) —(4c), we
consider an isentropic electron fluid model (with one spa-
tial dimension and time) to represent the stimulated Ra-
man scattering (SRS) process, involving the interaction
of two transverse electromagnetic waves and a longitu-
dinal Langmuir wave [7]. For a Lagrangian formulation
of SRS within this one-dimensional model, we use the
four-component field W' =—(n, y, C&, A), where n(x, t) is
the electron-fluid density, ~(x, t) is the electron-fluid ve-
locity potential, 4(x, t) is the electrostatic potential, and
A(x, t) =—A(x, t)y is the magnetic vector potential (cor-
responding to the gauge choice V A = 0). Here, the
electron-fluid velocity v is expressed in terms of X and
A as v —= ux + yeA/mc, with u = B,y, the electric and
magnetic fields are E = —xB,@ —yB,A/c, 8 = zB,A,
and (—e, m) are the charge and mass of an electron. In the
case of an isentropic fluid, the specific energy, denoted e,
depends only on the fluid density.

In SRS, the Langmuir wave and the two electromag-
netic waves satisfy the resonance condition (2). The
Langmuir wave, identified as wave 1, is described by
the wave field PI = (n~, g~, C&1, 0). The electromagnetic
waves, identified as waves 2 and 3, are described by the
wave field P,' = (O, O, O, A, ) (for s = 2 or 3). The La-
grangian density is [8]

aX a &ar & f aT'&

k ~V&' )
and the variations 6P', = i @|tel~, 6/2 = i—@Pz, and

6$& = 0, we obtain the desired result (4a) from (10),
with the explicit expressions:

0 = BX = +, 6$' +, Bp, t

t RX , BX

l+, 6VQ' + c.c.
aVp' )

Using the Euler-Lagrange equations,

1 1 BA B4 BA

2
~X—mn

—mn e(n),

e n2

A
2plC

(13)
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where N;(x, t) is the prescribed ion-IIuid density. The nonlinear evolution equation for each component field is expressed
as an Euler-Lagrange equation obtained from the variational principle 6(f dx

dt's

) = 0.
Writing W as in (1) and (3), we Taylor-expand (13) in powers of the wave fields, and after performing a Whitham

average, we obtain l' —= l'
p + l' tr + X ttt +;the bilinear term is

aA, aA, ~P' 2& 1 aa
&~u = g I

' ' "IA
I

+ + 2e Re(ni@&)
, , 4~ (c2 at ax c& '

) 4~ ax
j 2 2~Xi t ~X[

2m Re nil + uo mno (14)
Bx ) Bx no

(15)

J)(x, t) = 2mlm(n)y, *),
and Langmuir wave-action flux

I'&( t) =xuorl + 2mnDIm($,
"

Bx )

(16)

(17)

where v, —= (npd [npe(np)]/dnot't is an electron thermal
speed and cp„—= (4vrnoe /m)'t is the electron plasma
frequency, while the trilinear term is

2e
Re(n)A2A", ) .

mc
In Eq. (14), (np, up) are functions of x and t; the jon-
Iluid density N does not appear in (14), as a result of
Whitham averaging. Using the result (12), we then find
the Langmuir wave-action density

wave and transverse waves have the correct eikonal limit
[6]. In this limit, the complex wave fields are represented
as P' (x, t) = P' (x, t) exp i 8 (x, t), where derivatives of
the eikonal phase 0 define the local wave frequency
cp (x, t) =— —B,O and the local wave vector k (x, t) =-

VO; here, the wave amplitude P', wave frequency tp

and wave vector k are slowly varying functions of
x and t. Within the eikonal representation, the wave-
action density and wave-action flux are now defined
[3] from the eikonal-phase-averaged Lagrangian density
(X)(tp, k, 1/r;x, t) as

J (x, t) —= and I (x, t) —=-8(X ) a(X )
8 co~ Bk

Using the eikonal representation for the one-
dimensional SRS wave fields, (14) becomes

1 BA,
*

J,(x, t) = Im A,
~ 2wc Bt

(18)

while the transverse-wave action density and Ilux (s = 2
or 3) are

S

+ 2e Re(n~+&) + 2m' i lm(n~f&")

— mnok) IX i I' —(mv,'/no) ln| I', (22)1,BA,1,(x, t) = Im A,
*

2w Bx
(19)

Note that because the trilinear term (15) does not contain
any time derivatives or spatial gradients of the wave field,
it does not contribute to the expressions (16)—(19) for the
wave-action density and wave-action flux.

To verify that the Manley-Rowe relations (4a) —(4c) are
satisfied for our one-dimensional SRS model, we explic-
itly evaluate B,J)(x, t), B,J2(x, t), and B,J3(x, t), using the
nonlinear evolution equations for each wave (which in-
clude terms involving gradients of the background fields).
Without giving details, we find the exact equations:

B,J|(x, t) = —a, 11(x,t) —il (x, t),

B,J2 (x, t) = —R, I 2(x, t) —q (x, t),

(20a)

(20b)

a,J3(x, t) = —B,I', (x, t) + r1(x, t), (20c)

where q(x, t) = (e /mc )Im[n~A2A3] (x, t) is the nonlin-
ear coupling term. It is then easy to verify from these
equations that the Manley-Rowe relations (4a) —(4c) are
indeed satisfied.

We now check that our expressions (16)—(19) for the
wave-action density and wave-action flux of the Langmuir

where cu ]
———~1 —k] uo is the Langmuir-wave fre-

quency in the local rest frame, while (15) becomes
(Ltt&) = (e /mc—) Re(n~A2A3). Using (21) and (22),
the Langmuir-wave action density (16) and action Ilux
(17) become

and

4 = 2mnoluil'/tpi,

I
&

= (up + kivt/Qri)Ji,

(23)

(24)

respectively, where n ~
= nok& u & /cu &

and
4vrn~e/k~ ha—ve been eliminated in favor of u~

—= ik~ f ~

through the Langmuir-wave dispersion relation:
co~ = k~uo ~ (k&v, + or„)' . Substituting the group
velocity vg& —= Bcu&/Bk& = up + kiv, /pr& into (24), we
obtain the standard relation: I ~

= v~~ J1. The standard
relation Jt = F~/pr~ for the Langmuir-wave action den-
sity requires the eikonal-phase-averaged bilinear energy
density E] for the Langmuir wave. Here, the bilinear
eikonal-phase-averaged Lagrangian density (22) is written
as (Xtt) —= g L and the bilinear eikonal-phase-averaged
energy is defined [3] as E = tp BL /Btp —L . For
the Langmuir wave, we find F& = 2mnolu& I (tpi/~p~),
and, hence, the Langmuir-wave action density (23) can
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also be expressed as J~ ——E&/to~. We note that, although
E~ and co~ are not Galilean invariant, (23) shows that
the Langmuir-wave action density is, in fact, Galilean
invariant.

Next, the transverse-wave action density (d18) and
flux (19) become in the eikonal limit: 1, = co, ~A, ~~/2src~

and I, = k, ~A, ~
/27r, respectively. Using the transverse-

wave dipersion relation co, = ~(k2c2 + co~)'I2, we find

vs, —= k, c /co, and E, = co, (A, (2/2~c2, so that once
again we have the standard relations: J, = E, /to, and

r, =~„J,.
In conclusion, we point out that the success of our ap-

proach for deriving local Manley-Rowe relations, valid for
noneikonal wave fields, requires that a Lagrangian formu-
lation for the problem under consideration be available.
This then implies that our nonlinear evolution equations
must not contain any dissipation. Using the Whitham-
average and Noether methods, the Manley-Rowe rela-
tions, with wave-action density and wave-action Aux
defined in (12), are derived in an efficient and straight-
forward fashion once the Noether symmetries are identi-
fied. We noted above that a complex representation for
the wave fields was essential for obtaining nonvanishing
expressions for the wave-action density and wave-action
Aux. Moreover, these expressions were shown to have the
correct eikonal limit.

As an explicit example, we have considered a one-
dimensional model for stimulated Raman scattering in
an unmagnetized electron plasma. Expressions (16)—(19)
were obtained for the Langmuir-wave and transverse-
wave action densities and action

cruxes

without the

need for the eikonal representation for the wave fields.
These results can be generalized, e.g. , by introducing
the specific entropy s as a dynamical variable —the
specific energy s(n, s) is then a function of n and
s—or by considering a three-dimensional SRS model.
Lagrangian formulations are available for both cases [8],
and new local Manley-Rowe relations can be derived
by the Noether method. A Lagrangian formulation for
the stimulated Brillouin scattering process, involving the
interaction of two transverse electromagnetic waves and
an ion-acoustic wave, is also available, and local Manley-
Rowe relations can again be derived by the Noether
method.
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