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Markov Processes: Linguistics and Zipf’s Law
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It is shown that a 2-parameter random Markov process constructed with N states and biased
random transitions gives rise to a stationary distribution where the probabilities of occurrence of the
states, P(k), k = 1,...,N, exhibit the following three universal behaviors which characterize biological
sequences and texts in natural languages: (a) the rank-ordered frequencies of occurrence of words are
given by Zipf’s law P(k) « 1/k”?, where p(k) is slowly increasing for small k; (b) the frequencies of
occurrence of letters are given by P(k) = A — DIn(k); and (c) long-range correlations are observed
over long but finite intervals, as a result of the quasiergodicity of the Markov process.

PACS numbers: 87.10.+e, 02.50.Ga, 05.40.+j

Recently, an explosion of activity has centered on
the statistical nature of biological sequences and texts
in various languages [1]. The activities concentrate on
the observation that all examined sequences of biological
systems, such as DNA or amino acid chains [2], or
texts in both natural and artificial languages [3], deviate
remarkably from random sequences. It is, of course,
not surprising at all that sequences such as texts in
English, for instance, are locally constrained due to
some grammatical rules. However, the fact that local
grammatical rules affect the global statistical nature of
sequences, on large scales, is intriguing for a physicist.
These observations are not only interesting in their own
right, they have important practical implications. For
example, in higher organisms, only a small fraction of the
DNA sequence is used for coding proteins; the possible
function or the importance of the information content,
if any, of the noncoding regimes is unclear. Also, the
significance of long-range correlations (LRC’s) in a chain
of letters or words, i.e., a story, has been discussed
extensively [1]. In this paper, we will present a simple
2-parameter model which serves to explain and elucidate
these remarkable statistical properties.

Observations on the statistical nature of these sequences
has led to the claim that they obey (at least) the following
three universal laws:

(A) Zipf’s law for words. A long sequence is defined
over a vocabulary, a set of semantic units; words in a
natural language and the 64 3-tuples (“triplets”) which
code the amino acids. The frequency of occurrence
of each semantic unit is calculated, and the units are
ordered in deceasing rank order, P(1) = P2) = --- =
P(N), where N is the size of the vocabulary. It is found
in many languages that the following approximate scaling
behavior exists:

A
P(k) = R 1)
where A is a constant and p is estimated to be ~1.0 for
natural languages [4] and much smaller (~0.3) for DNA
sequences [5].

While the general wisdom is that the data fit well

to Zipf’s law, a more careful analysis reveals signifi-
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cant systematic deviations. The logarithmic derivative
p = —dIn(P)/dIn(k) is, in fact, nonconstant over even
relatively small intervals of k, i.e., intervals extending
over no more than one decade. The attempt to fit the
data to a generalized Zipf’s law [6], P(k) = A/(D + k)*,
is a sign of this deviation from the simple Zipf’s law. For
illustration, the probabilities of occurrence of words in the
Bible are plotted in Fig. 1, where the local logarithmic
slope p(k) is shown in the inset. It is clear that p is an in-
creasing function of &, and there is no macroscopic regime
or even an entire decade where p is a constant. This sit-
uation is, in fact, the typical one and has been verified
for many other natural and linguistic sequences [7]. As
a natural consequence of this variation of p, any attempt
to fit the data with a single p will be very sensitive to the
details of the fitting. It should also be pointed out that
the behavior of p is inconsistent with the sharp crossover
characteristic of the generalized Zipf’s law above.
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FIG. 1. Rank-ordered frequencies of words, P(k), for the

Bible (solid line) and for the Markov process defined in the
text with L = 16, x = B = 0.92 (dashed line). Both sets of
P’s normalized to P(10) = 1. Inset: Logarithmic derivative
p(k) for the Bible data.
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One may attempt to attribute these deviations from
Zipf’s law to, for example, the statistical fluctuations in
the data and/or the finite length of the strings studied.
However, while Zipf’s law is attractive in its simplicity,
we have no compelling reasons to expect it to hold,
much less a theoretical framework in which to analyze
deviations. The purpose of this paper is to present such
a framework. Our fundamental starting point will be to
suggest a simple natural process for the generation of
strings. This natural mechanism as we shall see gives
rise to a distribution that fits the data better than Zipf’s
law, and, furthermore, provides a general framework for
explaining other universal features of strings described
below.

(B) A law for letters. A similar ordering of the fre-
quencies of occurrence of letters, P(k), over the alphabet
is found, for many languages, to approximate the univer-
sal behavior

P(k) = A — DIn(k), 2)

where A and D are constants. This behavior holds for
biological sequences and was recently found to be correct
for over 100 natural languages where the size of the
alphabet ranged between 14 and 60 [8].

(C) Long-range correlation (LRC). For each long se-
quence mapped into a binary string the mean square fluc-
tuation F2(m) is calculated in the following way:

F2(1) = (D(lo, )*) — (Do, D))?, (3)

where D(lp,1) is the sum of the binary string in the
window [ly,lp + I] and (- --) stands for the average over
nonoverlapping windows of size /. The mapping to
binary strings is done in the following ways: (a) The
four alphabet letters (A, C, G, and T) of DNA or the 26
letters in English are divided equally at random into two
groups which are mapped to “0” and “1”; or (b) the binary
representation (ASCII) of the letters is used. A universal
behavior was again observed for all examined biological
sequences and natural texts,

F() ~ 1% a>1/2, @
for some intermediate regime 0 < ! < [yax, Where [ax 18
the size of the binary sequence. Note that for random
sequence « = 0.5, where for the strings examined the
typical « is in the range 0.6—0.9.

In the following we will show that it is possible that
these three universal laws are fundamentally related and
are a result of the statistical nature of random discrete-
time Markov processes (MP’s). Conceptually, a MP is the
simplest natural algorithm for the stochastic production of
strings. Consider the production of a string composed
of tokens chosen from among N possibilities. If the
probability distribution for choosing the next token is
only a function of the current last one in the string, then
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the construction can be considered as a MP. We denote
the transition probabilities between tokens, or states, i
and j as W(i,j) where, of course, > ; W(i,j) = 1. The
probabilities of occurrence of each token in the (infinite)
string is given by P(1),P(2),...,P(N), the stationary
ensemble of the MP.

The following discussion will concentrate, for simplic-
ity, on a subset of possible MP’s.

(a) Number of states. For simplicity, N is fixed to be
equal to 2© with L integer, and each state is identified by
an L-bit binary number between O and N — 1.

(b) W is a sparse matrix. The number of nonvanishing
elements in each row, C, is finite and does not scale with
N. The particular case that will be exhaustively examined
in the following is C = 2. If the P’s are considered as
dynamical variables, this type of system is known as a
highly diluted asymmetric network [9]; however, it has
the following two notable differences: (1) the sum of the
P’s is restricted to be unity, and (2) the activation function
for the update of the P’s is linear in the MP case.

(c) Meaningful connectivity. The cornerstone of the
discussed MP’s is that the transition matrix W differs
from a random graph. In a language, for instance,
the semantic structure guarantees that words are not
haphazardly followed by a random selection of other
words. Rather, “meaningfulness” strongly constrains the
choice of successive words. We attempt to model this fact
in the following simple manner. The two states mg, m,
connected to the state m are given by

moy = 2m modN; m; = 2mmodN + 1, 4)
where m = 0,1,...,2F — 1. In words, the L — 1 right-
most bits of state m are shifted one bit to the left, and
the rightmost bit is set equal to either O or 1. Thus each
successive word is closely related to the one before. Note
that under this construction both the outward and inward
connectivity of each state is equal to 2.

(d) Strength of transition probabilities. In order to
reduce the number of free parameters, the two weights,
transition probabilities, going out from each state can take
only the values x and 1 — x.

(e) Bias. For each state there are two options for the
transition probabilities. We pick W(m,my) = 1 — x and
W(m,m;) = x with probability B and vice versa with
probability 1 — B. The bias B is chosen for simplicity
to be a constant independent of the state, like a constant
external magnetic field. Note that the ensemble of
possible MP’s is due to the freedom given by B.

On the average the bias B and the strength x play the
same role, since the average drift towards 1 from each
state is xeef = xB + (1 — x) (1 — B), which is symmet-
ric in these two parameters. However, the effect of fluc-
tuations in x and B plays a different role, and, indeed,
all three universality behaviors mentioned above measure
fluctuations, since they are sensitive to the whole distribu-
tion of {P(k)}.
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The interesting regime in the unit square of (B,x)
is (0.5—1,0.5—1), since the process obeys a global
inversion symmetry x — 1 — x and B— 1 — B, and,
furthermore, changing only x - 1 — x or B— 1 — B is
like changing the role between O and 1.

For the case x = 0.5 one can easily show that for any B
the stationary solution is P(k) = 1/N, independent of k.
In general, the analytical solution is difficult, since we are
interested in the nature of the N entries of the eigenvector
of A = 1 which are ordered in a decreasing order, but
a priori this order is not known and its combinatorial
complexity is N!. Fortunately, the interesting limit of
B = 1 can also be solved analytically. In this limit, from
the detailed balance equations and from the normalization
constraint one can easily deduce that all states that contain
j I’s have the same probability

g’/ + g@)*, (6)

where ¢ = (1 — x)/x. Hence the distribution {P(k)} is
constructed from L plateaus, where the ratio between the
values of two subsequent plateaus is fixed to be q. The
local logarithmic slope p(k) between plateaus j — 1 and
Jj, where the rank order k = S (f), is given by

o= / 5] W[ S]] o

i=1

In the limit where L > j and j > 1 one can verify that

p(k) ~ —In(g)/In(L/j). ()

From these equations the following conclusions can be
derived. (a) |p| is an increasing function of k. (b) p
is approximately constant for Inj < InL. (c) For a fixed
k, p is a function of x only through In[g(x)]. (d) For
Jj > L/2, the size of the plateaus decreases with j, and
one can verify explicitly from Eq. (7) that the tail of the
distribution decays exponentially. (e) For large L and
small k, p(k) goes to zero as 1/ In(L).

An interesting question now is whether these features of
the distribution of {P(k)} also characterize the case where
the bias B < 1. Since the average drift towards 1 is given
by xe(B,x) = xB + (1 — x) (1 — B), it is plausible that
this parameter plays an important role. Since x enters
only through ¢, p should depend only on ger = (1 —
Xeff)/Xerr. Indeed, it was found in our simulations that
the local slope p(k;x) for all x are related to a universal
curve p*(k)

p (k) = p(k,x)/ In[gesr(x)]. )

Typical results for B = 0.8 and various x are plotted
in Fig. 2, where the data are ensemble averaged (the
variation between realizations is at any rate small for
reasonably large L). These data explain the origin of the
Zipf hypothesis; namely, the value of p appears fairly
constant for small k; in fact, the relative changes in
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FIG. 2. p(k) for L = 18 and fixed B = 0.85 for x = 0.6 (solid
line), x = 0.7 (dotted line), and x = 0.8 (dashed line) and after
rescaling by In[ges(x, B)]. Inset: P(k) for L = 18 and x = 0.8
for B = 0.7 (solid line) and B = 0.5 (dashed line).

p are quite large. Note that as x — 1/2 = € — 0, the
rescaling of the local slope vanishes as € and a flat
distribution is obtained. From Egs. (8) and (9) it is clear
that the local slope is an increasing function of x and B,
a result which is expected qualitatively, since the tree of
coming inputs into each state serves as an amplifier whose
strength increases with these two parameters [10]. We
stress that for the whole distribution the variation of the
local slope is visible, and for illustration an approximate
fit for the data from the Bible is presented in Fig. 1 and
for a DNA sequence in the inset of Fig. 3. Note that the
tail of the DNA data is also fitted well by our model.
There is no tail in the data from the Bible, however,
presumably due to the finite length of the text relative
to the vocabulary. Note that the fitted parameters are not
uniquely determined by the P(k) distribution; essentially
only x.¢r is fixed.

As B decreases toward 0.5, the effect of finite N
becomes stronger so that increasingly large values of N
must be used to achieve the data collapse as in Fig. 2. In
the limiting case of B = 0.5, there is no overall preference
for O or 1, and therefore P(k) for each state k becomes
more similar and we expect a distribution similar to N
random numbers whose sum is constrained to unity [11].
There are, of course, correlations due to the different
topology of the tree of inputs to each state, in_addition
to the fluctuations arising from the random arrangement
of the amplification factors x and 1 — x on each tree
[10]. However, due to the overall lack of amplification
in the trees, the fluctuation effects dominate, giving rise
to the above estimate. Indeed in our simulations with
6 = L = 20 we found that (see inset of Fig. 2)

P(k) = A — DIn(k) (10)

for essentially the whole range of k. The coefficients A
and D are found to increase with the strength x, and can
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FIG. 3. F(l) as a function of [ for L = 10, B = 0.6, and x =
0.995 measured on a sequence of size 10%. Power laws with
exponents 0.85 and 0.5 are drawn for comparison. Inset: P(k)
for the Yeast III chromosome (solid line) and for a MP with
L =6,x = B = 0.68.

be shown from normalization to depend on N through
A(N) « InN/N and D(N) « 1/N [7].

The scaling behavior Eq. (10) for the probabilities of
states in unbiased MP’s is the same as the probabilities of
occurrence of letters in the alphabet of natural languages
or biological sequences. A sequence of letters is affected
by short-range correlations due to some phonetic prefer-
ences and are represented in the MP by local preferences
for each state. However, the “meaning” of a language is
embedded only in words, and hence letters are expected
to be a result of a process without any meaning or “ten-
dency,” such as an unbiased MP.

Note that the same scaling behavior Eq. (10) was
proven to describe also a set of N ordered random
numbers under the global constraint that their sum is
unity [11]. However, we believe that the procedure
represented by a random MP is a more general and natural
explanation for the distribution of letters, since (a) short-
range correlations due to phonetic preferences that exist
between letters are naturally taken into account only by a
MP, (b) B = 0.5 is a limiting case of the biased MP which
characterizes the distribution of “words,” and (c) the MP
contains a free parameter x which can affect the slope D.

Another feature that the model possesses is LRC (a >
0.5) in the limit x — 1. For x near 1, the LRC’s extend
over a large but finite distance. For instance, in Fig. 3,
LRC over distances up to 1000 are seen for x = 0.995.
These LRC on intermediate scales are a result of the
quasiergodicity of the MP. Unlike the Zipf behavior, these
LRC’s are very sensitive to the entire distribution of the
x’s, which in our simple model take on only a single value.
Generalizing the model slightly to allow a few different
values of x, for instance, x = 0.8 with probability 0.7 and
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x = 0.995 with probability 0.3, results essentially identical
to that of Fig. 3 are obtained. The Zipf-law graph on the
other hand is, except for the tail, essentially that of the
average x =~ 0.86. Thus we see that the Zipf law and
the long-range correlations probe very different aspects
of the string-generation process. The origin of the LRC
when some of the x are close to 1 lies in the presence of
atypical loops [7], where all the x’s are close to one, so
that there loops are weakly coupled to the other loops. The
process then can get “trapped” on the loop, giving rise to
a sort of Levy flight [12,13]. On the longest time scales,
such fluctuations are washed out and « must revert to 0.5.
A quantitative treatment of these LRC’s is still an open
question.

We note that the entropy of the “languages” described
by our MP is an extensive quantity and shown to be, per
bit, —xInx — (1 — x)In(1 — x) [7]. This result indicates
that the number of legal texts should scale exponentially
with the text length, in contradistinction to some previous
claims [1]. Also, the generic features of our model persist
even for the case of a fully connected transition matrix
W, when only a finite number of transitions from a given
state are of order unity [7]. It is tempting to speculate
that the phenomenological parameters x and B can shed
light on the actual processes responsible for the generation
of the strings encountered in nature, or serve as an aid
in classifying different processes. Among the interesting
questions are the relationship between different languages
and its possible connection to the historical links between
them.
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