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Fluctuations and Fracture
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This Letter describes the way that metastable systems escape from traps. Brief periods during which
the system apparently runs backwards in time play a crucial role. These ideas are applied to a model
for one of nature's most obviously irreversible phenomena, the shattering of a body by a crack.
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where b is a phenomenological parameter describing the
rate at which thermal equilibrium establishes itself, k is
Boltzmann's constant, and T is the temperature.

Equation (2) is of a form whose solution may be rep-
resented by a functional integral [7]. A brief calculation
shows that the probability of a state beginning at x, v
and ending at xf, vf after time 7. is

g(xf, vf: 7) = —J dt g [mx; —F;+mbx;] /4mkTb
0

In Eq. (3) the integral is over all paths having the property
that

x, (0) = x, and x;(0) = v, ,

f ~ fx;(r) = x; and x, (T) = v, . (5)

In December of 1947, the 5. 5. Ponagansett suddenly
cracked in half while floating quietly at its pier in Boston
[1,2]. It provided dramatic evidence that macroscopic
objects can irreversibly be changed by imperceptible
fIuctuations. The purpose of this Letter is to present
a general way to calculate the likelihood of such a
fIuctuation, and to illustrate the formalism in a simple
model of fracture.

I will show that the formal study of Hamiltonian sys-
tems in thermal baths leads one to search for trajecto-
ries in phase space which move from specified initial to
specified final conditions while minimizing deviation from
Newton's laws. When a metastable system escapes from
a trap, initial stages of the process develop as if the sys-
tem were moving backwards in time [3].

General formalism —Consid. er a collection of I par-
ticles of mass I at positions x;, moving in response to
forces F;(xi, . . . , xM), with velocities v;, and which are
characterized statistically by

g(X1, Vi, X2, V2, . . . , XM, VM
'. t) .

The distribution function g gives the probability that
particles i are at positions x; with velocities v; at
time t. When placed in contact with a heat bath, this
probability distribution is assumed to obey the Fokker-
Planck equation [4—6]

U(T) = min
x(t) 4bX (7)

with the deviation D; from Newtonian mechanics

D;(t) =—mx; —[F; —mbx;].

The minimization in Eq. (7) is carried out over all paths
x(t) starting and ending with the positions and velocities
required by Eqs. (4) and (5).

Two types of minima of Eq. (7) can be understood
analytically. The first is a path x;

' '(t) which obeys
Newton's laws, so that D;(t) = 0. The activation barrier
U associated with this sort of path is zero, but it cannot
in general satisfy both boundary conditions Eqs. (4) and
(5). In particular, such paths cannot solve. problems in
which systems escape from local energy minima, since
the damping in Eq. (8) requires energy to decrease as t

moves from 0 to 7. A second class of minima is obtained
by taking any solution x; '"'(t), and running it backwards
in time. It is easy to check that x;

' '(T —t) solves the
Euler-Lagrange equations which follow from minimizing
U in Eq. (7), and that the activation barrier U resulting
from such a path is

U=2b
7

(
' Newt. )2

2
(9)

Paths of this second type can start at the bottom of an
energy well at t = 0, and evolve towards some higher
energy at t = ~. It is therefore natural to guess that the
best way to escape from a trapping potential is for a
system to follow a path of this second type from t = 0
until some intermediate time v-&, at which point the system
has reached the top of the barrier which restrains it. Now
the system can switch over to a path of the first type,

The argument of the exponential in Eq. (3) has a nice
physical interpretation. It says that the most important
thermal histories are those which minimize deviation from
Newton's laws.

I now assume that the functional integral in Eq. (3) is
dominated by a single path which maximizes the integrand
[8]. The approximation to be explored, therefore, is

g(x, v: T) —e (6)

where the activation barrier U(r) is
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xi+ ] 2xi + xi —]

F, = . +y(6/2%+ 1 —x;),
1

—2x; 0(1 —x;),

coupled to neighbors,

driving term,
bonds which snap.

(10)

Placing Eq. (10) into Eq. (2), one models a thin strip
of cracked material under stress, suffering bombardments
on all sides from molecules which maintain it at tem-
perature T.

Many features of Eq. (10) have been worked out
previously [12—14]. The main results are the following:
(1) For fixed driving term b, , most behavior becomes
independent of N in the limit where the model mimics
a microscopic crack in a macroscopic strip, the limit
of large X. (2) There are linearly stable, stationary
crack solutions for a wide range of A. In the limit of
large 1V, the range is from 5 = (~3 —1)/v 2 = 0.51. . .
to b, = (~3 + 1)/~2 = 1.93. . . . (3) A branch of stable
steadily moving solutions begins at around 5 = 1.2, and
v = v;„= 0.3, with v increasing as 5 increases. There
are no steady-state solutions at all for 0 ( v ( v;„.

The goal is to understand how a stable stationary crack
can be knocked out of complacency by thermal fluctuations

and further deterministic evolution, carrying no additional
contributions to U, will take it to the desired final state.
This guess captures the essential feature of solutions of
Eq. (7), although numerically obtained solutions actually
switch somewhat gradually from moving "backwards" in
time to moving "forwards" in time, not abruptly as this
argument would indicate.

Application to fracture F.r—acture provides a natural
context in which to explore this general formalism, since
it connects the spontaneous failure of atomic bonds
to macroscopic failure of a body. The classic theory
[9], going back to Griffith [10], holds that as the load
on a body increases rapid fracture should reproducibly
occur at a definite critical value, the Griffith point.
This picture lacks clean experimental verification in
brittle materials, and also leads to interesting conceptual
problems [11]. By contrast, recent studies from an atomic
point of view [12,13] find that there is no Griffith
point. The bifurcation is really subcritical; at a given
value of loading, both stationary and rapidly moving
cracks might be possible. Analogy with first-order phase
transitions immediately suggests that one take up the
statistical problem of the jump from stationary states
to rapidly moving ones. Simultaneously, one is led to
consider the separate physical process of creep (observed,
for example, in damaged car windshields) in which a
crack gradually inches forward, although never acquiring
substantial velocities.

In order to use Eq. (2) for this physical problem, one
must find an appropriate collection of forces F; . A
particularly simple case is illustrated in Fig. 1 and defined
by the equations
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and made to creep, or to run. Creep is slightly easier to un-
derstand. A single creep event constitutes a configuration
which is stationary and stable at t = 0, and again stationary
and stable a large time later at t = ~, but moved precisely
one lattice spacing to the right. The optimal path leading
to this event can be generated by grabbing the two masses
labeled by index 0 in Fig. 1 and pulling them slowly apart
until the bond connecting them is on the verge of snap-
ping. A slight impulse delivered to these central masses
causes the bond to sever, and, if the masses are now re-
leased, there is a range of 5 for which the subsequent time
evolution causes the crack to relax into a stationary con-
figuration one lattice point ahead. On the other hand, if
the masses are released before the bond severs, the whole
crack relaxes back to the original configuration. The time
reverse of this latter relaxation, glued onto the evolution
which severs a bond and moves the crack forward consti-
tutes a creep event. A solution of this type, generated by
numerical minimization of Eq. (7), appears in Fig. 2 [15].

FIG. 1. This one-dimensional model mimics the motion of a
crack in a strip, incorporating effects of discreteness. One can
view it as a model for the atoms lying just along the surface
of a crack. Above these atoms lie % additional lines of atoms,
which are, however, massless and do not enter as degrees of
freedom. Mass points are only allowed to move vertically, and
are tied to their vertical neighbors with springs which break
when they exceed unit extension. The lower portion of the
figure shows an actual steadily moving solution of the model
with velocity v = 0.5. Only cases where the mass points move
perfectly symmetrically about the crack line will be considered;
Eq. (10) does not treat the upper and lower masses as separate
degrees of freedom.
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FIG. 2. A creep event obtained from numerical minimization
of Eq. (7), for model Eq. (10) with 1V = 9, 5 = 1.2, and
b = 0.1. Time t = 0 is chosen as the instant that the bond
at the crack tip snaps. At large negative times the crack is
stationary. Traveling waves spontaneously appear far from the
tip, and travel towards it, growing as they move. They strike
the tip in perfect synchrony, snapping the bond at the tip so that
its velocity has dropped to zero as it snaps. The crack sheds
waves as it relaxes to its new stationary configuration, one site
to the right.

To calculate creep rates analytically, start with a
stationary crack in equilibrium [13],and imagine applying
forces to the masses nearest the crack tip, pulling them
apart adiabatically until the bond between them has
reached unit length and is ready to break. Denote the
energy put into the system during this process by Ep ]]
[16]. Assuming that b is small, using the virial theorem,
and the fact that relaxing solutions decay as e "'~, one
finds from Eq. (9) the estimate that the activation energy
for creep is

U = Ep.ii. (11)
Detailed numerical solutions produce activation barriers
consistent with this estimate, as shown in Fig. 3. Con-
sidering the probability of many consecutive creep events
randomly spaced in time, leads to the prediction that the
crack creep velocity l is

—U/kT (12)
This expression is in perfect accord with phenomenologi-
cal expressions for creep rates [17], and with previous
theoretical estimates [18].

For a range of driving strain 5, a stationary crack may
encounter an especially large thermal fluctuation which
drives it into rapid motion. Such a jump event is depicted
in Fig. 4. The difference in this case between creeping
and jumping is that at the instant the first bond snaps, the
central mass possesses a rather large momentum, and as a
consequence the crack is able to run forever. If 5 is less
than 1.198. . . such jump events are impossible, but once 5
becomes large enough, creep is no longer favorable, and
all cracks run as soon as a single bond snaps.

These results are summarized in Fig. 3, which shows
the activation energies of creep events and jump events as
a function of 6 for a particular value of N and b. The
region where creeping and jumping can coexist is quite
small, but I suspect that improvements of model Eq. (10)
will make this region larger.

Although Eq. (2) invokes only thermal fluctuations to
trigger jump and creep events, in practical situations non-
thermal noise and chemical attack are crucially important
[19]. The modeling must be improved to compare with ex-
periment. However, I would prefer to close with observa-
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FIG. 4. A jump event obtained from numerical minimization
of Eq. (7), for model Eq. (10) with N = 9, 6 = 1.2, and b =
0.1—precisely the same values as in Fig. 2. However, one now
imposes final boundary conditions xf and vf corresponding to
a running crack, and the fluctuations D; arriving at the crack tip
must be larger than in the previous case to achieve them.

FIG. 3. Results of a numerical search for minimum activation
energies, U, as a function of A. The circles show the activation
barrier of creep events, the squares show the activation barrier
of jump events, and the thick dashed line shows a plot of
the estimate Eq. (11). All the calculations are carried out for
W = 9 and b = 0.1. At low strains 5, only creep events are
possible. For 5 = 1.198 jump events first become possible,
although their activation barrier is initially very high. By the
time 5 = 1.3, jump events occur immediately if even a single
bond snaps, and creep is no longer possible.
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tions on how the conceptual picture illustrates the direction
of time [20]. Consider the dissipationless limit b 0 in
which all behavior becomes completely reversible. It ap-
pears that if one finds a rapidly running crack, takes every
mass and sends v; ~ —v;, the crack will then run back-
wards and close up [21]. Indeed, according to Liouville's
theorem, the phase space of initial conditions leading to
crack healing must be of the same size as the phase space
leading to crack separation, so should not bodies which
spontaneously heal themselves be as common as those
which shatter? A glance at Fig. 4 may help provide the
answer. The forward motion of a crack involves emission
of waves which travel to the far reaches of the system. For
the crack to be able to travel backwards and heal itself,
one has to arrange for these waves to arrive from far away
in exponentially perfect synchrony. It does little good to
know that the phase space of solutions which heals the
crack has a certain volume, if that volume is thin as strands
of a spider's web, and dispersed in the far reaches of the
Universe. Nevertheless, solutions of this type are crucial,
since decay cannot occur without such backwards-moving
eddies in the Row of time.
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